Metamath Proof Explorer


Theorem supxrgere

Description: If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses supxrgere.xph xφ
supxrgere.a φA*
supxrgere.b φB
supxrgere.y φx+yABx<y
Assertion supxrgere φBsupA*<

Proof

Step Hyp Ref Expression
1 supxrgere.xph xφ
2 supxrgere.a φA*
3 supxrgere.b φB
4 supxrgere.y φx+yABx<y
5 rexr BB*
6 pnfxr +∞*
7 6 a1i B+∞*
8 ltpnf BB<+∞
9 5 7 8 xrltled BB+∞
10 3 9 syl φB+∞
11 10 adantr φsupA*<=+∞B+∞
12 id supA*<=+∞supA*<=+∞
13 12 eqcomd supA*<=+∞+∞=supA*<
14 13 adantl φsupA*<=+∞+∞=supA*<
15 11 14 breqtrd φsupA*<=+∞BsupA*<
16 simpl φ¬supA*<=+∞φ
17 1rp 1+
18 nfcv _x1
19 nfv x1+
20 1 19 nfan xφ1+
21 nfv xyAB1<y
22 20 21 nfim xφ1+yAB1<y
23 eleq1 x=1x+1+
24 23 anbi2d x=1φx+φ1+
25 oveq2 x=1Bx=B1
26 25 breq1d x=1Bx<yB1<y
27 26 rexbidv x=1yABx<yyAB1<y
28 24 27 imbi12d x=1φx+yABx<yφ1+yAB1<y
29 18 22 28 4 vtoclgf 1+φ1+yAB1<y
30 17 29 ax-mp φ1+yAB1<y
31 17 30 mpan2 φyAB1<y
32 31 adantr φ¬supA*<=+∞yAB1<y
33 mnfxr −∞*
34 33 a1i φyAB1<y−∞*
35 2 sselda φyAy*
36 35 3adant3 φyAB1<yy*
37 supxrcl A*supA*<*
38 2 37 syl φsupA*<*
39 38 3ad2ant1 φyAB1<ysupA*<*
40 peano2rem BB1
41 3 40 syl φB1
42 41 rexrd φB1*
43 42 adantr φ¬−∞<yB1*
44 43 3ad2antl1 φyAB1<y¬−∞<yB1*
45 36 adantr φyAB1<y¬−∞<yy*
46 33 a1i φyAB1<y¬−∞<y−∞*
47 simpl3 φyAB1<y¬−∞<yB1<y
48 simpr φyA¬−∞<y¬−∞<y
49 35 adantr φyA¬−∞<yy*
50 33 a1i φyA¬−∞<y−∞*
51 xrlenlt y*−∞*y−∞¬−∞<y
52 49 50 51 syl2anc φyA¬−∞<yy−∞¬−∞<y
53 48 52 mpbird φyA¬−∞<yy−∞
54 53 3adantl3 φyAB1<y¬−∞<yy−∞
55 44 45 46 47 54 xrltletrd φyAB1<y¬−∞<yB1<−∞
56 nltmnf B1*¬B1<−∞
57 42 56 syl φ¬B1<−∞
58 57 adantr φ¬−∞<y¬B1<−∞
59 58 3ad2antl1 φyAB1<y¬−∞<y¬B1<−∞
60 55 59 condan φyAB1<y−∞<y
61 2 adantr φyAA*
62 simpr φyAyA
63 supxrub A*yAysupA*<
64 61 62 63 syl2anc φyAysupA*<
65 64 3adant3 φyAB1<yysupA*<
66 34 36 39 60 65 xrltletrd φyAB1<y−∞<supA*<
67 66 3exp φyAB1<y−∞<supA*<
68 67 adantr φ¬supA*<=+∞yAB1<y−∞<supA*<
69 68 rexlimdv φ¬supA*<=+∞yAB1<y−∞<supA*<
70 32 69 mpd φ¬supA*<=+∞−∞<supA*<
71 simpr φ¬supA*<=+∞¬supA*<=+∞
72 nltpnft supA*<*supA*<=+∞¬supA*<<+∞
73 38 72 syl φsupA*<=+∞¬supA*<<+∞
74 73 adantr φ¬supA*<=+∞supA*<=+∞¬supA*<<+∞
75 71 74 mtbid φ¬supA*<=+∞¬¬supA*<<+∞
76 75 notnotrd φ¬supA*<=+∞supA*<<+∞
77 70 76 jca φ¬supA*<=+∞−∞<supA*<supA*<<+∞
78 38 adantr φ¬supA*<=+∞supA*<*
79 xrrebnd supA*<*supA*<−∞<supA*<supA*<<+∞
80 78 79 syl φ¬supA*<=+∞supA*<−∞<supA*<supA*<<+∞
81 77 80 mpbird φ¬supA*<=+∞supA*<
82 simpl φsupA*<¬BsupA*<φsupA*<
83 simpr φsupA*<¬BsupA*<¬BsupA*<
84 82 simprd φsupA*<¬BsupA*<supA*<
85 3 ad2antrr φsupA*<¬BsupA*<B
86 84 85 ltnled φsupA*<¬BsupA*<supA*<<B¬BsupA*<
87 83 86 mpbird φsupA*<¬BsupA*<supA*<<B
88 simpll φsupA*<supA*<<Bφ
89 3 adantr φsupA*<B
90 simpr φsupA*<supA*<
91 89 90 resubcld φsupA*<BsupA*<
92 91 adantr φsupA*<supA*<<BBsupA*<
93 simpr φsupA*<supA*<<BsupA*<<B
94 90 adantr φsupA*<supA*<<BsupA*<
95 88 3 syl φsupA*<supA*<<BB
96 94 95 posdifd φsupA*<supA*<<BsupA*<<B0<BsupA*<
97 93 96 mpbid φsupA*<supA*<<B0<BsupA*<
98 92 97 elrpd φsupA*<supA*<<BBsupA*<+
99 ovex BsupA*<V
100 nfcv _xBsupA*<
101 nfv xBsupA*<+
102 1 101 nfan xφBsupA*<+
103 nfv xyABBsupA*<<y
104 102 103 nfim xφBsupA*<+yABBsupA*<<y
105 eleq1 x=BsupA*<x+BsupA*<+
106 105 anbi2d x=BsupA*<φx+φBsupA*<+
107 oveq2 x=BsupA*<Bx=BBsupA*<
108 107 breq1d x=BsupA*<Bx<yBBsupA*<<y
109 108 rexbidv x=BsupA*<yABx<yyABBsupA*<<y
110 106 109 imbi12d x=BsupA*<φx+yABx<yφBsupA*<+yABBsupA*<<y
111 100 104 110 4 vtoclgf BsupA*<VφBsupA*<+yABBsupA*<<y
112 99 111 ax-mp φBsupA*<+yABBsupA*<<y
113 88 98 112 syl2anc φsupA*<supA*<<ByABBsupA*<<y
114 3 recnd φB
115 114 ad3antrrr φsupA*<supA*<<BBBsupA*<<yB
116 90 recnd φsupA*<supA*<
117 116 ad2antrr φsupA*<supA*<<BBBsupA*<<ysupA*<
118 115 117 nncand φsupA*<supA*<<BBBsupA*<<yBBsupA*<=supA*<
119 118 eqcomd φsupA*<supA*<<BBBsupA*<<ysupA*<=BBsupA*<
120 simpr φsupA*<supA*<<BBBsupA*<<yBBsupA*<<y
121 119 120 eqbrtrd φsupA*<supA*<<BBBsupA*<<ysupA*<<y
122 121 ex φsupA*<supA*<<BBBsupA*<<ysupA*<<y
123 122 adantr φsupA*<supA*<<ByABBsupA*<<ysupA*<<y
124 123 reximdva φsupA*<supA*<<ByABBsupA*<<yyAsupA*<<y
125 113 124 mpd φsupA*<supA*<<ByAsupA*<<y
126 82 87 125 syl2anc φsupA*<¬BsupA*<yAsupA*<<y
127 61 37 syl φyAsupA*<*
128 35 127 xrlenltd φyAysupA*<¬supA*<<y
129 64 128 mpbid φyA¬supA*<<y
130 129 ralrimiva φyA¬supA*<<y
131 ralnex yA¬supA*<<y¬yAsupA*<<y
132 130 131 sylib φ¬yAsupA*<<y
133 132 ad2antrr φsupA*<¬BsupA*<¬yAsupA*<<y
134 126 133 condan φsupA*<BsupA*<
135 16 81 134 syl2anc φ¬supA*<=+∞BsupA*<
136 15 135 pm2.61dan φBsupA*<