Metamath Proof Explorer


Theorem trcl

Description: For any set A , show the properties of its transitive closure C . Similar to Theorem 9.1 of TakeutiZaring p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses trcl.1 AV
trcl.2 F=reczVzzAω
trcl.3 C=yωFy
Assertion trcl ACTrCxAxTrxCx

Proof

Step Hyp Ref Expression
1 trcl.1 AV
2 trcl.2 F=reczVzzAω
3 trcl.3 C=yωFy
4 peano1 ω
5 2 fveq1i F=reczVzzAω
6 fr0g AVreczVzzAω=A
7 1 6 ax-mp reczVzzAω=A
8 5 7 eqtr2i A=F
9 8 eqimssi AF
10 fveq2 y=Fy=F
11 10 sseq2d y=AFyAF
12 11 rspcev ωAFyωAFy
13 4 9 12 mp2an yωAFy
14 ssiun yωAFyAyωFy
15 13 14 ax-mp AyωFy
16 15 3 sseqtrri AC
17 dftr2 TryωFyvuvuuyωFyvyωFy
18 eliun uyωFyyωuFy
19 18 anbi2i vuuyωFyvuyωuFy
20 r19.42v yωvuuFyvuyωuFy
21 19 20 bitr4i vuuyωFyyωvuuFy
22 elunii vuuFyvFy
23 ssun2 FyFyFy
24 fvex FyV
25 24 uniex FyV
26 24 25 unex FyFyV
27 id x=zx=z
28 unieq x=zx=z
29 27 28 uneq12d x=zxx=zz
30 id x=Fyx=Fy
31 unieq x=Fyx=Fy
32 30 31 uneq12d x=Fyxx=FyFy
33 2 29 32 frsucmpt2 yωFyFyVFsucy=FyFy
34 26 33 mpan2 yωFsucy=FyFy
35 23 34 sseqtrrid yωFyFsucy
36 35 sseld yωvFyvFsucy
37 22 36 syl5 yωvuuFyvFsucy
38 37 reximia yωvuuFyyωvFsucy
39 21 38 sylbi vuuyωFyyωvFsucy
40 peano2 yωsucyω
41 fveq2 u=sucyFu=Fsucy
42 41 eleq2d u=sucyvFuvFsucy
43 42 rspcev sucyωvFsucyuωvFu
44 43 ex sucyωvFsucyuωvFu
45 40 44 syl yωvFsucyuωvFu
46 45 rexlimiv yωvFsucyuωvFu
47 fveq2 y=uFy=Fu
48 47 eleq2d y=uvFyvFu
49 48 cbvrexvw yωvFyuωvFu
50 46 49 sylibr yωvFsucyyωvFy
51 eliun vyωFyyωvFy
52 50 51 sylibr yωvFsucyvyωFy
53 39 52 syl vuuyωFyvyωFy
54 53 ax-gen uvuuyωFyvyωFy
55 17 54 mpgbir TryωFy
56 treq C=yωFyTrCTryωFy
57 3 56 ax-mp TrCTryωFy
58 55 57 mpbir TrC
59 fveq2 v=Fv=F
60 59 sseq1d v=FvxFx
61 fveq2 v=yFv=Fy
62 61 sseq1d v=yFvxFyx
63 fveq2 v=sucyFv=Fsucy
64 63 sseq1d v=sucyFvxFsucyx
65 5 7 eqtri F=A
66 65 sseq1i FxAx
67 66 biimpri AxFx
68 67 adantr AxTrxFx
69 uniss FyxFyx
70 df-tr Trxxx
71 sstr2 FyxxxFyx
72 70 71 biimtrid FyxTrxFyx
73 69 72 syl FyxTrxFyx
74 73 anc2li FyxTrxFyxFyx
75 unss FyxFyxFyFyx
76 74 75 imbitrdi FyxTrxFyFyx
77 34 sseq1d yωFsucyxFyFyx
78 77 biimprd yωFyFyxFsucyx
79 76 78 syl9r yωFyxTrxFsucyx
80 79 com23 yωTrxFyxFsucyx
81 80 adantld yωAxTrxFyxFsucyx
82 60 62 64 68 81 finds2 vωAxTrxFvx
83 82 com12 AxTrxvωFvx
84 83 ralrimiv AxTrxvωFvx
85 fveq2 y=vFy=Fv
86 85 cbviunv yωFy=vωFv
87 3 86 eqtri C=vωFv
88 87 sseq1i CxvωFvx
89 iunss vωFvxvωFvx
90 88 89 bitri CxvωFvx
91 84 90 sylibr AxTrxCx
92 91 ax-gen xAxTrxCx
93 16 58 92 3pm3.2i ACTrCxAxTrxCx