Metamath Proof Explorer


Theorem tsmsmhm

Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmsmhm.b B=BaseG
tsmsmhm.j J=TopOpenG
tsmsmhm.k K=TopOpenH
tsmsmhm.1 φGCMnd
tsmsmhm.2 φGTopSp
tsmsmhm.3 φHCMnd
tsmsmhm.4 φHTopSp
tsmsmhm.5 φCGMndHomH
tsmsmhm.6 φCJCnK
tsmsmhm.a φAV
tsmsmhm.f φF:AB
tsmsmhm.x φXGtsumsF
Assertion tsmsmhm φCXHtsumsCF

Proof

Step Hyp Ref Expression
1 tsmsmhm.b B=BaseG
2 tsmsmhm.j J=TopOpenG
3 tsmsmhm.k K=TopOpenH
4 tsmsmhm.1 φGCMnd
5 tsmsmhm.2 φGTopSp
6 tsmsmhm.3 φHCMnd
7 tsmsmhm.4 φHTopSp
8 tsmsmhm.5 φCGMndHomH
9 tsmsmhm.6 φCJCnK
10 tsmsmhm.a φAV
11 tsmsmhm.f φF:AB
12 tsmsmhm.x φXGtsumsF
13 1 2 istps GTopSpJTopOnB
14 5 13 sylib φJTopOnB
15 eqid 𝒫AFin=𝒫AFin
16 eqid y𝒫AFinz𝒫AFin|yz=y𝒫AFinz𝒫AFin|yz
17 eqid rany𝒫AFinz𝒫AFin|yz=rany𝒫AFinz𝒫AFin|yz
18 15 16 17 10 tsmsfbas φrany𝒫AFinz𝒫AFin|yzfBas𝒫AFin
19 fgcl rany𝒫AFinz𝒫AFin|yzfBas𝒫AFin𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFin
20 18 19 syl φ𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFin
21 1 15 4 10 11 tsmslem1 φz𝒫AFinGFzB
22 21 fmpttd φz𝒫AFinGFz:𝒫AFinB
23 1 2 15 17 5 10 11 tsmsval φGtsumsF=JfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
24 12 23 eleqtrd φXJfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
25 1 4 5 10 11 tsmscl φGtsumsFB
26 25 12 sseldd φXB
27 toponuni JTopOnBB=J
28 14 27 syl φB=J
29 26 28 eleqtrd φXJ
30 eqid J=J
31 30 cncnpi CJCnKXJCJCnPKX
32 9 29 31 syl2anc φCJCnPKX
33 flfcnp JTopOnB𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFinz𝒫AFinGFz:𝒫AFinBXJfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFzCJCnPKXCXKfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzCz𝒫AFinGFz
34 14 20 22 24 32 33 syl32anc φCXKfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzCz𝒫AFinGFz
35 eqid BaseH=BaseH
36 35 3 istps HTopSpKTopOnBaseH
37 7 36 sylib φKTopOnBaseH
38 cnf2 JTopOnBKTopOnBaseHCJCnKC:BBaseH
39 14 37 9 38 syl3anc φC:BBaseH
40 fco C:BBaseHF:ABCF:ABaseH
41 39 11 40 syl2anc φCF:ABaseH
42 35 3 15 17 6 10 41 tsmsval φHtsumsCF=KfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinHCFz
43 39 21 cofmpt φCz𝒫AFinGFz=z𝒫AFinCGFz
44 resco CFz=CFz
45 44 oveq2i HCFz=HCFz
46 eqid 0G=0G
47 4 adantr φz𝒫AFinGCMnd
48 6 adantr φz𝒫AFinHCMnd
49 cmnmnd HCMndHMnd
50 48 49 syl φz𝒫AFinHMnd
51 elinel2 z𝒫AFinzFin
52 51 adantl φz𝒫AFinzFin
53 8 adantr φz𝒫AFinCGMndHomH
54 elfpw z𝒫AFinzAzFin
55 54 simplbi z𝒫AFinzA
56 fssres F:ABzAFz:zB
57 11 55 56 syl2an φz𝒫AFinFz:zB
58 fvexd φz𝒫AFin0GV
59 57 52 58 fdmfifsupp φz𝒫AFinfinSupp0GFz
60 1 46 47 50 52 53 57 59 gsummhm φz𝒫AFinHCFz=CGFz
61 45 60 eqtrid φz𝒫AFinHCFz=CGFz
62 61 mpteq2dva φz𝒫AFinHCFz=z𝒫AFinCGFz
63 43 62 eqtr4d φCz𝒫AFinGFz=z𝒫AFinHCFz
64 63 fveq2d φKfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzCz𝒫AFinGFz=KfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinHCFz
65 42 64 eqtr4d φHtsumsCF=KfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzCz𝒫AFinGFz
66 34 65 eleqtrrd φCXHtsumsCF