Description: Apply a continuous group homomorphism to an infinite group sum. (Contributed by Mario Carneiro, 18-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tsmsmhm.b | |
|
tsmsmhm.j | |
||
tsmsmhm.k | |
||
tsmsmhm.1 | |
||
tsmsmhm.2 | |
||
tsmsmhm.3 | |
||
tsmsmhm.4 | |
||
tsmsmhm.5 | |
||
tsmsmhm.6 | |
||
tsmsmhm.a | |
||
tsmsmhm.f | |
||
tsmsmhm.x | |
||
Assertion | tsmsmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsmhm.b | |
|
2 | tsmsmhm.j | |
|
3 | tsmsmhm.k | |
|
4 | tsmsmhm.1 | |
|
5 | tsmsmhm.2 | |
|
6 | tsmsmhm.3 | |
|
7 | tsmsmhm.4 | |
|
8 | tsmsmhm.5 | |
|
9 | tsmsmhm.6 | |
|
10 | tsmsmhm.a | |
|
11 | tsmsmhm.f | |
|
12 | tsmsmhm.x | |
|
13 | 1 2 | istps | |
14 | 5 13 | sylib | |
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 15 16 17 10 | tsmsfbas | |
19 | fgcl | |
|
20 | 18 19 | syl | |
21 | 1 15 4 10 11 | tsmslem1 | |
22 | 21 | fmpttd | |
23 | 1 2 15 17 5 10 11 | tsmsval | |
24 | 12 23 | eleqtrd | |
25 | 1 4 5 10 11 | tsmscl | |
26 | 25 12 | sseldd | |
27 | toponuni | |
|
28 | 14 27 | syl | |
29 | 26 28 | eleqtrd | |
30 | eqid | |
|
31 | 30 | cncnpi | |
32 | 9 29 31 | syl2anc | |
33 | flfcnp | |
|
34 | 14 20 22 24 32 33 | syl32anc | |
35 | eqid | |
|
36 | 35 3 | istps | |
37 | 7 36 | sylib | |
38 | cnf2 | |
|
39 | 14 37 9 38 | syl3anc | |
40 | fco | |
|
41 | 39 11 40 | syl2anc | |
42 | 35 3 15 17 6 10 41 | tsmsval | |
43 | 39 21 | cofmpt | |
44 | resco | |
|
45 | 44 | oveq2i | |
46 | eqid | |
|
47 | 4 | adantr | |
48 | 6 | adantr | |
49 | cmnmnd | |
|
50 | 48 49 | syl | |
51 | elinel2 | |
|
52 | 51 | adantl | |
53 | 8 | adantr | |
54 | elfpw | |
|
55 | 54 | simplbi | |
56 | fssres | |
|
57 | 11 55 56 | syl2an | |
58 | fvexd | |
|
59 | 57 52 58 | fdmfifsupp | |
60 | 1 46 47 50 52 53 57 59 | gsummhm | |
61 | 45 60 | eqtrid | |
62 | 61 | mpteq2dva | |
63 | 43 62 | eqtr4d | |
64 | 63 | fveq2d | |
65 | 42 64 | eqtr4d | |
66 | 34 65 | eleqtrrd | |