| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txval.1 |
|
| 2 |
|
xpeq1 |
|
| 3 |
|
xpeq2 |
|
| 4 |
2 3
|
cbvmpov |
|
| 5 |
4
|
rnmpo |
|
| 6 |
1 5
|
eqtri |
|
| 7 |
6
|
eqabri |
|
| 8 |
|
xpeq1 |
|
| 9 |
|
xpeq2 |
|
| 10 |
8 9
|
cbvmpov |
|
| 11 |
10
|
rnmpo |
|
| 12 |
1 11
|
eqtri |
|
| 13 |
12
|
eqabri |
|
| 14 |
7 13
|
anbi12i |
|
| 15 |
|
reeanv |
|
| 16 |
14 15
|
bitr4i |
|
| 17 |
|
reeanv |
|
| 18 |
|
basis2 |
|
| 19 |
18
|
exp43 |
|
| 20 |
19
|
imp42 |
|
| 21 |
|
basis2 |
|
| 22 |
21
|
exp43 |
|
| 23 |
22
|
imp42 |
|
| 24 |
|
reeanv |
|
| 25 |
|
opelxpi |
|
| 26 |
|
xpss12 |
|
| 27 |
25 26
|
anim12i |
|
| 28 |
27
|
an4s |
|
| 29 |
28
|
reximi |
|
| 30 |
29
|
reximi |
|
| 31 |
24 30
|
sylbir |
|
| 32 |
20 23 31
|
syl2an |
|
| 33 |
32
|
an4s |
|
| 34 |
33
|
ralrimivva |
|
| 35 |
|
eleq1 |
|
| 36 |
35
|
anbi1d |
|
| 37 |
36
|
2rexbidv |
|
| 38 |
37
|
ralxp |
|
| 39 |
34 38
|
sylibr |
|
| 40 |
39
|
an4s |
|
| 41 |
40
|
anassrs |
|
| 42 |
|
ineq12 |
|
| 43 |
|
inxp |
|
| 44 |
42 43
|
eqtrdi |
|
| 45 |
44
|
sseq2d |
|
| 46 |
45
|
anbi2d |
|
| 47 |
46
|
rexbidv |
|
| 48 |
1
|
rexeqi |
|
| 49 |
|
fvex |
|
| 50 |
|
fvex |
|
| 51 |
49 50
|
xpex |
|
| 52 |
51
|
rgenw |
|
| 53 |
|
vex |
|
| 54 |
|
vex |
|
| 55 |
53 54
|
op1std |
|
| 56 |
53 54
|
op2ndd |
|
| 57 |
55 56
|
xpeq12d |
|
| 58 |
57
|
mpompt |
|
| 59 |
58
|
eqcomi |
|
| 60 |
|
eleq2 |
|
| 61 |
|
sseq1 |
|
| 62 |
60 61
|
anbi12d |
|
| 63 |
59 62
|
rexrnmptw |
|
| 64 |
52 63
|
ax-mp |
|
| 65 |
57
|
eleq2d |
|
| 66 |
57
|
sseq1d |
|
| 67 |
65 66
|
anbi12d |
|
| 68 |
67
|
rexxp |
|
| 69 |
48 64 68
|
3bitri |
|
| 70 |
47 69
|
bitrdi |
|
| 71 |
44 70
|
raleqbidv |
|
| 72 |
41 71
|
syl5ibrcom |
|
| 73 |
72
|
rexlimdvva |
|
| 74 |
17 73
|
biimtrrid |
|
| 75 |
74
|
rexlimdvva |
|
| 76 |
16 75
|
biimtrid |
|
| 77 |
76
|
ralrimivv |
|
| 78 |
1
|
txbasex |
|
| 79 |
|
isbasis2g |
|
| 80 |
78 79
|
syl |
|
| 81 |
77 80
|
mpbird |
|