Metamath Proof Explorer


Theorem unblimceq0lem

Description: Lemma for unblimceq0 . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unblimceq0lem.0 φ S
unblimceq0lem.1 φ F : S
unblimceq0lem.2 φ A
unblimceq0lem.3 φ b + d + x S x A < d b F x
Assertion unblimceq0lem φ c + d + y S y A y A < d c F y

Proof

Step Hyp Ref Expression
1 unblimceq0lem.0 φ S
2 unblimceq0lem.1 φ F : S
3 unblimceq0lem.2 φ A
4 unblimceq0lem.3 φ b + d + x S x A < d b F x
5 breq1 b = if A S F A + c c b F x if A S F A + c c F x
6 5 anbi2d b = if A S F A + c c x A < d b F x x A < d if A S F A + c c F x
7 6 rexbidv b = if A S F A + c c x S x A < d b F x x S x A < d if A S F A + c c F x
8 7 ralbidv b = if A S F A + c c d + x S x A < d b F x d + x S x A < d if A S F A + c c F x
9 4 adantr φ c + d + b + d + x S x A < d b F x
10 2 ad2antrr φ c + d + A S F : S
11 simpr φ c + d + A S A S
12 10 11 ffvelrnd φ c + d + A S F A
13 12 abscld φ c + d + A S F A
14 simprl φ c + d + c +
15 14 rpred φ c + d + c
16 15 adantr φ c + d + A S c
17 13 16 readdcld φ c + d + A S F A + c
18 12 absge0d φ c + d + A S 0 F A
19 14 rpgt0d φ c + d + 0 < c
20 19 adantr φ c + d + A S 0 < c
21 13 16 18 20 addgegt0d φ c + d + A S 0 < F A + c
22 17 21 elrpd φ c + d + A S F A + c +
23 simplrl φ c + d + ¬ A S c +
24 22 23 ifclda φ c + d + if A S F A + c c +
25 8 9 24 rspcdva φ c + d + d + x S x A < d if A S F A + c c F x
26 simprr φ c + d + d +
27 rsp d + x S x A < d if A S F A + c c F x d + x S x A < d if A S F A + c c F x
28 25 26 27 sylc φ c + d + x S x A < d if A S F A + c c F x
29 simprl φ c + d + x S x A < d if A S F A + c c F x x S
30 neeq1 y = x y A x A
31 fvoveq1 y = x y A = x A
32 31 breq1d y = x y A < d x A < d
33 2fveq3 y = x F y = F x
34 33 breq2d y = x c F y c F x
35 30 32 34 3anbi123d y = x y A y A < d c F y x A x A < d c F x
36 35 adantl φ c + d + x S x A < d if A S F A + c c F x y = x y A y A < d c F y x A x A < d c F x
37 17 adantlr φ c + d + x S x A < d if A S F A + c c F x A S F A + c
38 2 ad2antrr φ c + d + x S x A < d if A S F A + c c F x F : S
39 38 29 ffvelrnd φ c + d + x S x A < d if A S F A + c c F x F x
40 39 abscld φ c + d + x S x A < d if A S F A + c c F x F x
41 40 adantr φ c + d + x S x A < d if A S F A + c c F x A S F x
42 simpr φ c + d + x S x A < d if A S F A + c c F x A S A S
43 42 iftrued φ c + d + x S x A < d if A S F A + c c F x A S if A S F A + c c = F A + c
44 43 eqcomd φ c + d + x S x A < d if A S F A + c c F x A S F A + c = if A S F A + c c
45 simprrr φ c + d + x S x A < d if A S F A + c c F x if A S F A + c c F x
46 45 adantr φ c + d + x S x A < d if A S F A + c c F x A S if A S F A + c c F x
47 44 46 eqbrtrd φ c + d + x S x A < d if A S F A + c c F x A S F A + c F x
48 37 41 47 lensymd φ c + d + x S x A < d if A S F A + c c F x A S ¬ F x < F A + c
49 2fveq3 x = A F x = F A
50 49 adantl φ c + d + A S x = A F x = F A
51 16 13 ltaddposd φ c + d + A S 0 < c F A < F A + c
52 20 51 mpbid φ c + d + A S F A < F A + c
53 52 adantr φ c + d + A S x = A F A < F A + c
54 50 53 eqbrtrd φ c + d + A S x = A F x < F A + c
55 54 ex φ c + d + A S x = A F x < F A + c
56 55 adantlr φ c + d + x S x A < d if A S F A + c c F x A S x = A F x < F A + c
57 56 necon3bd φ c + d + x S x A < d if A S F A + c c F x A S ¬ F x < F A + c x A
58 48 57 mpd φ c + d + x S x A < d if A S F A + c c F x A S x A
59 simprrl φ c + d + x S x A < d if A S F A + c c F x x A < d
60 59 adantr φ c + d + x S x A < d if A S F A + c c F x A S x A < d
61 16 adantlr φ c + d + x S x A < d if A S F A + c c F x A S c
62 12 adantlr φ c + d + x S x A < d if A S F A + c c F x A S F A
63 62 absge0d φ c + d + x S x A < d if A S F A + c c F x A S 0 F A
64 13 adantlr φ c + d + x S x A < d if A S F A + c c F x A S F A
65 61 64 addge02d φ c + d + x S x A < d if A S F A + c c F x A S 0 F A c F A + c
66 63 65 mpbid φ c + d + x S x A < d if A S F A + c c F x A S c F A + c
67 61 37 41 66 47 letrd φ c + d + x S x A < d if A S F A + c c F x A S c F x
68 58 60 67 3jca φ c + d + x S x A < d if A S F A + c c F x A S x A x A < d c F x
69 simpr φ c + d + x S x A < d if A S F A + c c F x ¬ A S ¬ A S
70 simpr φ c + d + x S x A < d if A S F A + c c F x ¬ A S x = A x = A
71 29 adantr φ c + d + x S x A < d if A S F A + c c F x ¬ A S x S
72 71 adantr φ c + d + x S x A < d if A S F A + c c F x ¬ A S x = A x S
73 70 72 eqeltrrd φ c + d + x S x A < d if A S F A + c c F x ¬ A S x = A A S
74 73 ex φ c + d + x S x A < d if A S F A + c c F x ¬ A S x = A A S
75 74 necon3bd φ c + d + x S x A < d if A S F A + c c F x ¬ A S ¬ A S x A
76 69 75 mpd φ c + d + x S x A < d if A S F A + c c F x ¬ A S x A
77 59 adantr φ c + d + x S x A < d if A S F A + c c F x ¬ A S x A < d
78 69 iffalsed φ c + d + x S x A < d if A S F A + c c F x ¬ A S if A S F A + c c = c
79 78 eqcomd φ c + d + x S x A < d if A S F A + c c F x ¬ A S c = if A S F A + c c
80 45 adantr φ c + d + x S x A < d if A S F A + c c F x ¬ A S if A S F A + c c F x
81 79 80 eqbrtrd φ c + d + x S x A < d if A S F A + c c F x ¬ A S c F x
82 76 77 81 3jca φ c + d + x S x A < d if A S F A + c c F x ¬ A S x A x A < d c F x
83 68 82 pm2.61dan φ c + d + x S x A < d if A S F A + c c F x x A x A < d c F x
84 29 36 83 rspcedvd φ c + d + x S x A < d if A S F A + c c F x y S y A y A < d c F y
85 28 84 rexlimddv φ c + d + y S y A y A < d c F y
86 85 ralrimivva φ c + d + y S y A y A < d c F y