Step |
Hyp |
Ref |
Expression |
1 |
|
uncmp.1 |
|
2 |
|
simpll |
|
3 |
|
simpll |
|
4 |
|
ssun1 |
|
5 |
|
sseq2 |
|
6 |
4 5
|
mpbiri |
|
7 |
6
|
ad2antlr |
|
8 |
1
|
cmpsub |
|
9 |
3 7 8
|
syl2anc |
|
10 |
|
simprr |
|
11 |
7 10
|
sseqtrd |
|
12 |
|
unieq |
|
13 |
12
|
sseq2d |
|
14 |
|
pweq |
|
15 |
14
|
ineq1d |
|
16 |
15
|
rexeqdv |
|
17 |
13 16
|
imbi12d |
|
18 |
17
|
rspcv |
|
19 |
18
|
ad2antrl |
|
20 |
11 19
|
mpid |
|
21 |
9 20
|
sylbid |
|
22 |
|
ssun2 |
|
23 |
|
sseq2 |
|
24 |
22 23
|
mpbiri |
|
25 |
24
|
ad2antlr |
|
26 |
1
|
cmpsub |
|
27 |
3 25 26
|
syl2anc |
|
28 |
25 10
|
sseqtrd |
|
29 |
|
unieq |
|
30 |
29
|
sseq2d |
|
31 |
|
pweq |
|
32 |
31
|
ineq1d |
|
33 |
32
|
rexeqdv |
|
34 |
30 33
|
imbi12d |
|
35 |
34
|
rspcv |
|
36 |
35
|
ad2antrl |
|
37 |
28 36
|
mpid |
|
38 |
27 37
|
sylbid |
|
39 |
|
reeanv |
|
40 |
|
elinel1 |
|
41 |
40
|
elpwid |
|
42 |
|
elinel1 |
|
43 |
42
|
elpwid |
|
44 |
41 43
|
anim12i |
|
45 |
44
|
ad2antrl |
|
46 |
|
unss |
|
47 |
45 46
|
sylib |
|
48 |
|
elinel2 |
|
49 |
|
elinel2 |
|
50 |
|
unfi |
|
51 |
48 49 50
|
syl2an |
|
52 |
51
|
ad2antrl |
|
53 |
47 52
|
jca |
|
54 |
|
elin |
|
55 |
|
vex |
|
56 |
55
|
elpw2 |
|
57 |
56
|
anbi1i |
|
58 |
54 57
|
bitr2i |
|
59 |
53 58
|
sylib |
|
60 |
|
simpllr |
|
61 |
|
ssun3 |
|
62 |
|
ssun4 |
|
63 |
61 62
|
anim12i |
|
64 |
63
|
ad2antll |
|
65 |
|
unss |
|
66 |
64 65
|
sylib |
|
67 |
60 66
|
eqsstrd |
|
68 |
|
uniun |
|
69 |
67 68
|
sseqtrrdi |
|
70 |
|
elpwi |
|
71 |
70
|
adantr |
|
72 |
71
|
ad2antlr |
|
73 |
47 72
|
sstrd |
|
74 |
|
uniss |
|
75 |
74 1
|
sseqtrrdi |
|
76 |
73 75
|
syl |
|
77 |
69 76
|
eqssd |
|
78 |
|
unieq |
|
79 |
78
|
rspceeqv |
|
80 |
59 77 79
|
syl2anc |
|
81 |
80
|
exp32 |
|
82 |
81
|
rexlimdvv |
|
83 |
39 82
|
syl5bir |
|
84 |
21 38 83
|
syl2and |
|
85 |
84
|
impancom |
|
86 |
85
|
expd |
|
87 |
86
|
ralrimiv |
|
88 |
1
|
iscmp |
|
89 |
2 87 88
|
sylanbrc |
|