Metamath Proof Explorer


Theorem fiuncmp

Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis fiuncmp.1 X=J
Assertion fiuncmp JTopAFinxAJ𝑡BCompJ𝑡xABComp

Proof

Step Hyp Ref Expression
1 fiuncmp.1 X=J
2 ssid AA
3 simp2 JTopAFinxAJ𝑡BCompAFin
4 sseq1 t=tAA
5 iuneq1 t=xtB=xB
6 0iun xB=
7 5 6 eqtrdi t=xtB=
8 7 oveq2d t=J𝑡xtB=J𝑡
9 8 eleq1d t=J𝑡xtBCompJ𝑡Comp
10 4 9 imbi12d t=tAJ𝑡xtBCompAJ𝑡Comp
11 10 imbi2d t=JTopAFinxAJ𝑡BComptAJ𝑡xtBCompJTopAFinxAJ𝑡BCompAJ𝑡Comp
12 sseq1 t=ytAyA
13 iuneq1 t=yxtB=xyB
14 13 oveq2d t=yJ𝑡xtB=J𝑡xyB
15 14 eleq1d t=yJ𝑡xtBCompJ𝑡xyBComp
16 12 15 imbi12d t=ytAJ𝑡xtBCompyAJ𝑡xyBComp
17 16 imbi2d t=yJTopAFinxAJ𝑡BComptAJ𝑡xtBCompJTopAFinxAJ𝑡BCompyAJ𝑡xyBComp
18 sseq1 t=yztAyzA
19 iuneq1 t=yzxtB=xyzB
20 19 oveq2d t=yzJ𝑡xtB=J𝑡xyzB
21 20 eleq1d t=yzJ𝑡xtBCompJ𝑡xyzBComp
22 18 21 imbi12d t=yztAJ𝑡xtBCompyzAJ𝑡xyzBComp
23 22 imbi2d t=yzJTopAFinxAJ𝑡BComptAJ𝑡xtBCompJTopAFinxAJ𝑡BCompyzAJ𝑡xyzBComp
24 sseq1 t=AtAAA
25 iuneq1 t=AxtB=xAB
26 25 oveq2d t=AJ𝑡xtB=J𝑡xAB
27 26 eleq1d t=AJ𝑡xtBCompJ𝑡xABComp
28 24 27 imbi12d t=AtAJ𝑡xtBCompAAJ𝑡xABComp
29 28 imbi2d t=AJTopAFinxAJ𝑡BComptAJ𝑡xtBCompJTopAFinxAJ𝑡BCompAAJ𝑡xABComp
30 rest0 JTopJ𝑡=
31 0cmp Comp
32 30 31 eqeltrdi JTopJ𝑡Comp
33 32 3ad2ant1 JTopAFinxAJ𝑡BCompJ𝑡Comp
34 33 a1d JTopAFinxAJ𝑡BCompAJ𝑡Comp
35 ssun1 yyz
36 id yzAyzA
37 35 36 sstrid yzAyA
38 37 imim1i yAJ𝑡xyBCompyzAJ𝑡xyBComp
39 simpl1 JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJTop
40 iunxun xyzB=xyBxzB
41 simprr JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyBComp
42 cmptop J𝑡xyBCompJ𝑡xyBTop
43 restrcl J𝑡xyBTopJVxyBV
44 43 simprd J𝑡xyBTopxyBV
45 41 42 44 3syl JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxyBV
46 nfcv _tB
47 nfcsb1v _xt/xB
48 csbeq1a x=tB=t/xB
49 46 47 48 cbviun xzB=tzt/xB
50 vex zV
51 csbeq1 t=zt/xB=z/xB
52 50 51 iunxsn tzt/xB=z/xB
53 49 52 eqtri xzB=z/xB
54 51 oveq2d t=zJ𝑡t/xB=J𝑡z/xB
55 54 eleq1d t=zJ𝑡t/xBCompJ𝑡z/xBComp
56 simpl3 JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxAJ𝑡BComp
57 nfv tJ𝑡BComp
58 nfcv _xJ
59 nfcv _x𝑡
60 58 59 47 nfov _xJ𝑡t/xB
61 60 nfel1 xJ𝑡t/xBComp
62 48 oveq2d x=tJ𝑡B=J𝑡t/xB
63 62 eleq1d x=tJ𝑡BCompJ𝑡t/xBComp
64 57 61 63 cbvralw xAJ𝑡BComptAJ𝑡t/xBComp
65 56 64 sylib JTopAFinxAJ𝑡BCompyzAJ𝑡xyBComptAJ𝑡t/xBComp
66 ssun2 zyz
67 simprl JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompyzA
68 66 67 sstrid JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompzA
69 50 snss zAzA
70 68 69 sylibr JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompzA
71 55 65 70 rspcdva JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡z/xBComp
72 cmptop J𝑡z/xBCompJ𝑡z/xBTop
73 restrcl J𝑡z/xBTopJVz/xBV
74 73 simprd J𝑡z/xBTopz/xBV
75 71 72 74 3syl JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompz/xBV
76 53 75 eqeltrid JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxzBV
77 unexg xyBVxzBVxyBxzBV
78 45 76 77 syl2anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxyBxzBV
79 40 78 eqeltrid JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxyzBV
80 resttop JTopxyzBVJ𝑡xyzBTop
81 39 79 80 syl2anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzBTop
82 eqid J=J
83 82 restin JTopxyzBVJ𝑡xyzB=J𝑡xyzBJ
84 39 79 83 syl2anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB=J𝑡xyzBJ
85 84 unieqd JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB=J𝑡xyzBJ
86 inss2 xyzBJJ
87 86 1 sseqtrri xyzBJX
88 1 restuni JTopxyzBJXxyzBJ=J𝑡xyzBJ
89 39 87 88 sylancl JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxyzBJ=J𝑡xyzBJ
90 85 89 eqtr4d JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB=xyzBJ
91 53 uneq2i xyBxzB=xyBz/xB
92 40 91 eqtri xyzB=xyBz/xB
93 92 ineq1i xyzBJ=xyBz/xBJ
94 indir xyBz/xBJ=xyBJz/xBJ
95 93 94 eqtri xyzBJ=xyBJz/xBJ
96 90 95 eqtrdi JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB=xyBJz/xBJ
97 inss1 xyBJxyB
98 ssun1 xyBxyBxzB
99 98 40 sseqtrri xyBxyzB
100 97 99 sstri xyBJxyzB
101 100 a1i JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompxyBJxyzB
102 restabs JTopxyBJxyzBxyzBVJ𝑡xyzB𝑡xyBJ=J𝑡xyBJ
103 39 101 79 102 syl3anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB𝑡xyBJ=J𝑡xyBJ
104 82 restin JTopxyBVJ𝑡xyB=J𝑡xyBJ
105 39 45 104 syl2anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyB=J𝑡xyBJ
106 103 105 eqtr4d JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB𝑡xyBJ=J𝑡xyB
107 106 41 eqeltrd JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB𝑡xyBJComp
108 inss1 z/xBJz/xB
109 ssun2 xzBxyBxzB
110 109 40 sseqtrri xzBxyzB
111 53 110 eqsstrri z/xBxyzB
112 108 111 sstri z/xBJxyzB
113 112 a1i JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompz/xBJxyzB
114 restabs JTopz/xBJxyzBxyzBVJ𝑡xyzB𝑡z/xBJ=J𝑡z/xBJ
115 39 113 79 114 syl3anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB𝑡z/xBJ=J𝑡z/xBJ
116 82 restin JTopz/xBVJ𝑡z/xB=J𝑡z/xBJ
117 39 75 116 syl2anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡z/xB=J𝑡z/xBJ
118 115 117 eqtr4d JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB𝑡z/xBJ=J𝑡z/xB
119 118 71 eqeltrd JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzB𝑡z/xBJComp
120 eqid J𝑡xyzB=J𝑡xyzB
121 120 uncmp J𝑡xyzBTopJ𝑡xyzB=xyBJz/xBJJ𝑡xyzB𝑡xyBJCompJ𝑡xyzB𝑡z/xBJCompJ𝑡xyzBComp
122 81 96 107 119 121 syl22anc JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzBComp
123 122 exp32 JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompJ𝑡xyzBComp
124 123 a2d JTopAFinxAJ𝑡BCompyzAJ𝑡xyBCompyzAJ𝑡xyzBComp
125 38 124 syl5 JTopAFinxAJ𝑡BCompyAJ𝑡xyBCompyzAJ𝑡xyzBComp
126 125 a2i JTopAFinxAJ𝑡BCompyAJ𝑡xyBCompJTopAFinxAJ𝑡BCompyzAJ𝑡xyzBComp
127 126 a1i yFinJTopAFinxAJ𝑡BCompyAJ𝑡xyBCompJTopAFinxAJ𝑡BCompyzAJ𝑡xyzBComp
128 11 17 23 29 34 127 findcard2 AFinJTopAFinxAJ𝑡BCompAAJ𝑡xABComp
129 3 128 mpcom JTopAFinxAJ𝑡BCompAAJ𝑡xABComp
130 2 129 mpi JTopAFinxAJ𝑡BCompJ𝑡xABComp