Metamath Proof Explorer


Theorem uncmp

Description: The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010)

Ref Expression
Hypothesis uncmp.1 X=J
Assertion uncmp JTopX=STJ𝑡SCompJ𝑡TCompJComp

Proof

Step Hyp Ref Expression
1 uncmp.1 X=J
2 simpll JTopX=STJ𝑡SCompJ𝑡TCompJTop
3 simpll JTopX=STc𝒫JX=cJTop
4 ssun1 SST
5 sseq2 X=STSXSST
6 4 5 mpbiri X=STSX
7 6 ad2antlr JTopX=STc𝒫JX=cSX
8 1 cmpsub JTopSXJ𝑡SCompm𝒫JSmn𝒫mFinSn
9 3 7 8 syl2anc JTopX=STc𝒫JX=cJ𝑡SCompm𝒫JSmn𝒫mFinSn
10 simprr JTopX=STc𝒫JX=cX=c
11 7 10 sseqtrd JTopX=STc𝒫JX=cSc
12 unieq m=cm=c
13 12 sseq2d m=cSmSc
14 pweq m=c𝒫m=𝒫c
15 14 ineq1d m=c𝒫mFin=𝒫cFin
16 15 rexeqdv m=cn𝒫mFinSnn𝒫cFinSn
17 13 16 imbi12d m=cSmn𝒫mFinSnScn𝒫cFinSn
18 17 rspcv c𝒫Jm𝒫JSmn𝒫mFinSnScn𝒫cFinSn
19 18 ad2antrl JTopX=STc𝒫JX=cm𝒫JSmn𝒫mFinSnScn𝒫cFinSn
20 11 19 mpid JTopX=STc𝒫JX=cm𝒫JSmn𝒫mFinSnn𝒫cFinSn
21 9 20 sylbid JTopX=STc𝒫JX=cJ𝑡SCompn𝒫cFinSn
22 ssun2 TST
23 sseq2 X=STTXTST
24 22 23 mpbiri X=STTX
25 24 ad2antlr JTopX=STc𝒫JX=cTX
26 1 cmpsub JTopTXJ𝑡TCompr𝒫JTrs𝒫rFinTs
27 3 25 26 syl2anc JTopX=STc𝒫JX=cJ𝑡TCompr𝒫JTrs𝒫rFinTs
28 25 10 sseqtrd JTopX=STc𝒫JX=cTc
29 unieq r=cr=c
30 29 sseq2d r=cTrTc
31 pweq r=c𝒫r=𝒫c
32 31 ineq1d r=c𝒫rFin=𝒫cFin
33 32 rexeqdv r=cs𝒫rFinTss𝒫cFinTs
34 30 33 imbi12d r=cTrs𝒫rFinTsTcs𝒫cFinTs
35 34 rspcv c𝒫Jr𝒫JTrs𝒫rFinTsTcs𝒫cFinTs
36 35 ad2antrl JTopX=STc𝒫JX=cr𝒫JTrs𝒫rFinTsTcs𝒫cFinTs
37 28 36 mpid JTopX=STc𝒫JX=cr𝒫JTrs𝒫rFinTss𝒫cFinTs
38 27 37 sylbid JTopX=STc𝒫JX=cJ𝑡TComps𝒫cFinTs
39 reeanv n𝒫cFins𝒫cFinSnTsn𝒫cFinSns𝒫cFinTs
40 elinel1 n𝒫cFinn𝒫c
41 40 elpwid n𝒫cFinnc
42 elinel1 s𝒫cFins𝒫c
43 42 elpwid s𝒫cFinsc
44 41 43 anim12i n𝒫cFins𝒫cFinncsc
45 44 ad2antrl JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsncsc
46 unss ncscnsc
47 45 46 sylib JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsnsc
48 elinel2 n𝒫cFinnFin
49 elinel2 s𝒫cFinsFin
50 unfi nFinsFinnsFin
51 48 49 50 syl2an n𝒫cFins𝒫cFinnsFin
52 51 ad2antrl JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsnsFin
53 47 52 jca JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsnscnsFin
54 elin ns𝒫cFinns𝒫cnsFin
55 vex cV
56 55 elpw2 ns𝒫cnsc
57 56 anbi1i ns𝒫cnsFinnscnsFin
58 54 57 bitr2i nscnsFinns𝒫cFin
59 53 58 sylib JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsns𝒫cFin
60 simpllr JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsX=ST
61 ssun3 SnSns
62 ssun4 TsTns
63 61 62 anim12i SnTsSnsTns
64 63 ad2antll JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsSnsTns
65 unss SnsTnsSTns
66 64 65 sylib JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsSTns
67 60 66 eqsstrd JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsXns
68 uniun ns=ns
69 67 68 sseqtrrdi JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsXns
70 elpwi c𝒫JcJ
71 70 adantr c𝒫JX=ccJ
72 71 ad2antlr JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTscJ
73 47 72 sstrd JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsnsJ
74 uniss nsJnsJ
75 74 1 sseqtrrdi nsJnsX
76 73 75 syl JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsnsX
77 69 76 eqssd JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsX=ns
78 unieq d=nsd=ns
79 78 rspceeqv ns𝒫cFinX=nsd𝒫cFinX=d
80 59 77 79 syl2anc JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsd𝒫cFinX=d
81 80 exp32 JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsd𝒫cFinX=d
82 81 rexlimdvv JTopX=STc𝒫JX=cn𝒫cFins𝒫cFinSnTsd𝒫cFinX=d
83 39 82 biimtrrid JTopX=STc𝒫JX=cn𝒫cFinSns𝒫cFinTsd𝒫cFinX=d
84 21 38 83 syl2and JTopX=STc𝒫JX=cJ𝑡SCompJ𝑡TCompd𝒫cFinX=d
85 84 impancom JTopX=STJ𝑡SCompJ𝑡TCompc𝒫JX=cd𝒫cFinX=d
86 85 expd JTopX=STJ𝑡SCompJ𝑡TCompc𝒫JX=cd𝒫cFinX=d
87 86 ralrimiv JTopX=STJ𝑡SCompJ𝑡TCompc𝒫JX=cd𝒫cFinX=d
88 1 iscmp JCompJTopc𝒫JX=cd𝒫cFinX=d
89 2 87 88 sylanbrc JTopX=STJ𝑡SCompJ𝑡TCompJComp