Step |
Hyp |
Ref |
Expression |
1 |
|
lidlabl.l |
|
2 |
|
lidlabl.i |
|
3 |
|
zlidlring.b |
|
4 |
|
zlidlring.0 |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6
|
isringrng |
|
8 |
|
domnring |
|
9 |
8
|
anim1i |
|
10 |
1 2
|
lidlrng |
|
11 |
9 10
|
syl |
|
12 |
|
ibar |
|
13 |
12
|
bicomd |
|
14 |
13
|
adantl |
|
15 |
|
eqid |
|
16 |
2 15
|
ressmulr |
|
17 |
16
|
eqcomd |
|
18 |
17
|
oveqd |
|
19 |
18
|
eqeq1d |
|
20 |
17
|
oveqd |
|
21 |
20
|
eqeq1d |
|
22 |
19 21
|
anbi12d |
|
23 |
22
|
ad2antlr |
|
24 |
23
|
ad2antrr |
|
25 |
24
|
ralbidv |
|
26 |
|
simp-4l |
|
27 |
1 2
|
lidlbas |
|
28 |
27
|
eleq1d |
|
29 |
28
|
ibir |
|
30 |
29
|
ad3antlr |
|
31 |
27
|
ad2antlr |
|
32 |
31
|
eqeq1d |
|
33 |
32
|
biimpd |
|
34 |
33
|
necon3bd |
|
35 |
34
|
imp |
|
36 |
30 35
|
jca |
|
37 |
36
|
adantr |
|
38 |
|
simpr |
|
39 |
|
eqid |
|
40 |
1 15 39 4
|
lidldomn1 |
|
41 |
26 37 38 40
|
syl3anc |
|
42 |
25 41
|
sylbid |
|
43 |
42
|
imp |
|
44 |
27
|
ad3antlr |
|
45 |
44
|
eleq2d |
|
46 |
45
|
biimpd |
|
47 |
46
|
imp |
|
48 |
47
|
adantr |
|
49 |
43 48
|
eqeltrrd |
|
50 |
49
|
rexlimdva2 |
|
51 |
50
|
impancom |
|
52 |
9
|
adantr |
|
53 |
1 3 39
|
lidl1el |
|
54 |
52 53
|
syl |
|
55 |
54
|
adantr |
|
56 |
51 55
|
sylibd |
|
57 |
56
|
orrd |
|
58 |
57
|
ex |
|
59 |
1 2 3 4
|
zlidlring |
|
60 |
7
|
simprbi |
|
61 |
59 60
|
syl |
|
62 |
61
|
ex |
|
63 |
8 62
|
syl |
|
64 |
63
|
ad2antrr |
|
65 |
9
|
anim1i |
|
66 |
3 15
|
ringideu |
|
67 |
|
reurex |
|
68 |
66 67
|
syl |
|
69 |
68
|
adantr |
|
70 |
69
|
ad2antrr |
|
71 |
2 3
|
ressbas |
|
72 |
71
|
ad3antlr |
|
73 |
|
ineq1 |
|
74 |
|
inidm |
|
75 |
73 74
|
eqtrdi |
|
76 |
75
|
adantl |
|
77 |
72 76
|
eqtr3d |
|
78 |
22
|
ad3antlr |
|
79 |
77 78
|
raleqbidv |
|
80 |
77 79
|
rexeqbidv |
|
81 |
70 80
|
mpbird |
|
82 |
81
|
ex |
|
83 |
65 82
|
syl |
|
84 |
64 83
|
jaod |
|
85 |
58 84
|
impbid |
|
86 |
14 85
|
bitrd |
|
87 |
11 86
|
mpdan |
|
88 |
7 87
|
syl5bb |
|