Metamath Proof Explorer


Theorem uzlidlring

Description: Only the zero (left) ideal or the unit (left) ideal of a domain is a unital ring. (Contributed by AV, 18-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L=LIdealR
lidlabl.i I=R𝑠U
zlidlring.b B=BaseR
zlidlring.0 0˙=0R
Assertion uzlidlring RDomnULIRingU=0˙U=B

Proof

Step Hyp Ref Expression
1 lidlabl.l L=LIdealR
2 lidlabl.i I=R𝑠U
3 zlidlring.b B=BaseR
4 zlidlring.0 0˙=0R
5 eqid BaseI=BaseI
6 eqid I=I
7 5 6 isringrng IRingIRngxBaseIyBaseIxIy=yyIx=y
8 domnring RDomnRRing
9 8 anim1i RDomnULRRingUL
10 1 2 lidlrng RRingULIRng
11 9 10 syl RDomnULIRng
12 ibar IRngxBaseIyBaseIxIy=yyIx=yIRngxBaseIyBaseIxIy=yyIx=y
13 12 bicomd IRngIRngxBaseIyBaseIxIy=yyIx=yxBaseIyBaseIxIy=yyIx=y
14 13 adantl RDomnULIRngIRngxBaseIyBaseIxIy=yyIx=yxBaseIyBaseIxIy=yyIx=y
15 eqid R=R
16 2 15 ressmulr ULR=I
17 16 eqcomd ULI=R
18 17 oveqd ULxIy=xRy
19 18 eqeq1d ULxIy=yxRy=y
20 17 oveqd ULyIx=yRx
21 20 eqeq1d ULyIx=yyRx=y
22 19 21 anbi12d ULxIy=yyIx=yxRy=yyRx=y
23 22 ad2antlr RDomnULIRngxIy=yyIx=yxRy=yyRx=y
24 23 ad2antrr RDomnULIRng¬U=0˙xBaseIxIy=yyIx=yxRy=yyRx=y
25 24 ralbidv RDomnULIRng¬U=0˙xBaseIyBaseIxIy=yyIx=yyBaseIxRy=yyRx=y
26 simp-4l RDomnULIRng¬U=0˙xBaseIRDomn
27 1 2 lidlbas ULBaseI=U
28 27 eleq1d ULBaseILUL
29 28 ibir ULBaseIL
30 29 ad3antlr RDomnULIRng¬U=0˙BaseIL
31 27 ad2antlr RDomnULIRngBaseI=U
32 31 eqeq1d RDomnULIRngBaseI=0˙U=0˙
33 32 biimpd RDomnULIRngBaseI=0˙U=0˙
34 33 necon3bd RDomnULIRng¬U=0˙BaseI0˙
35 34 imp RDomnULIRng¬U=0˙BaseI0˙
36 30 35 jca RDomnULIRng¬U=0˙BaseILBaseI0˙
37 36 adantr RDomnULIRng¬U=0˙xBaseIBaseILBaseI0˙
38 simpr RDomnULIRng¬U=0˙xBaseIxBaseI
39 eqid 1R=1R
40 1 15 39 4 lidldomn1 RDomnBaseILBaseI0˙xBaseIyBaseIxRy=yyRx=yx=1R
41 26 37 38 40 syl3anc RDomnULIRng¬U=0˙xBaseIyBaseIxRy=yyRx=yx=1R
42 25 41 sylbid RDomnULIRng¬U=0˙xBaseIyBaseIxIy=yyIx=yx=1R
43 42 imp RDomnULIRng¬U=0˙xBaseIyBaseIxIy=yyIx=yx=1R
44 27 ad3antlr RDomnULIRng¬U=0˙BaseI=U
45 44 eleq2d RDomnULIRng¬U=0˙xBaseIxU
46 45 biimpd RDomnULIRng¬U=0˙xBaseIxU
47 46 imp RDomnULIRng¬U=0˙xBaseIxU
48 47 adantr RDomnULIRng¬U=0˙xBaseIyBaseIxIy=yyIx=yxU
49 43 48 eqeltrrd RDomnULIRng¬U=0˙xBaseIyBaseIxIy=yyIx=y1RU
50 49 rexlimdva2 RDomnULIRng¬U=0˙xBaseIyBaseIxIy=yyIx=y1RU
51 50 impancom RDomnULIRngxBaseIyBaseIxIy=yyIx=y¬U=0˙1RU
52 9 adantr RDomnULIRngRRingUL
53 1 3 39 lidl1el RRingUL1RUU=B
54 52 53 syl RDomnULIRng1RUU=B
55 54 adantr RDomnULIRngxBaseIyBaseIxIy=yyIx=y1RUU=B
56 51 55 sylibd RDomnULIRngxBaseIyBaseIxIy=yyIx=y¬U=0˙U=B
57 56 orrd RDomnULIRngxBaseIyBaseIxIy=yyIx=yU=0˙U=B
58 57 ex RDomnULIRngxBaseIyBaseIxIy=yyIx=yU=0˙U=B
59 1 2 3 4 zlidlring RRingU=0˙IRing
60 7 simprbi IRingxBaseIyBaseIxIy=yyIx=y
61 59 60 syl RRingU=0˙xBaseIyBaseIxIy=yyIx=y
62 61 ex RRingU=0˙xBaseIyBaseIxIy=yyIx=y
63 8 62 syl RDomnU=0˙xBaseIyBaseIxIy=yyIx=y
64 63 ad2antrr RDomnULIRngU=0˙xBaseIyBaseIxIy=yyIx=y
65 9 anim1i RDomnULIRngRRingULIRng
66 3 15 ringideu RRing∃!xByBxRy=yyRx=y
67 reurex ∃!xByBxRy=yyRx=yxByBxRy=yyRx=y
68 66 67 syl RRingxByBxRy=yyRx=y
69 68 adantr RRingULxByBxRy=yyRx=y
70 69 ad2antrr RRingULIRngU=BxByBxRy=yyRx=y
71 2 3 ressbas ULUB=BaseI
72 71 ad3antlr RRingULIRngU=BUB=BaseI
73 ineq1 U=BUB=BB
74 inidm BB=B
75 73 74 eqtrdi U=BUB=B
76 75 adantl RRingULIRngU=BUB=B
77 72 76 eqtr3d RRingULIRngU=BBaseI=B
78 22 ad3antlr RRingULIRngU=BxIy=yyIx=yxRy=yyRx=y
79 77 78 raleqbidv RRingULIRngU=ByBaseIxIy=yyIx=yyBxRy=yyRx=y
80 77 79 rexeqbidv RRingULIRngU=BxBaseIyBaseIxIy=yyIx=yxByBxRy=yyRx=y
81 70 80 mpbird RRingULIRngU=BxBaseIyBaseIxIy=yyIx=y
82 81 ex RRingULIRngU=BxBaseIyBaseIxIy=yyIx=y
83 65 82 syl RDomnULIRngU=BxBaseIyBaseIxIy=yyIx=y
84 64 83 jaod RDomnULIRngU=0˙U=BxBaseIyBaseIxIy=yyIx=y
85 58 84 impbid RDomnULIRngxBaseIyBaseIxIy=yyIx=yU=0˙U=B
86 14 85 bitrd RDomnULIRngIRngxBaseIyBaseIxIy=yyIx=yU=0˙U=B
87 11 86 mpdan RDomnULIRngxBaseIyBaseIxIy=yyIx=yU=0˙U=B
88 7 87 bitrid RDomnULIRingU=0˙U=B