Metamath Proof Explorer


Theorem xrge0pluscn

Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017)

Ref Expression
Hypotheses xrge0iifhmeo.1 F=x01ifx=0+∞logx
xrge0iifhmeo.k J=ordTop𝑡0+∞
xrge0pluscn.1 +˙=+𝑒0+∞×0+∞
Assertion xrge0pluscn +˙J×tJCnJ

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F=x01ifx=0+∞logx
2 xrge0iifhmeo.k J=ordTop𝑡0+∞
3 xrge0pluscn.1 +˙=+𝑒0+∞×0+∞
4 1 2 xrge0iifhmeo FIIHomeoJ
5 unitsscn 01
6 xpss12 010101×01×
7 5 5 6 mp2an 01×01×
8 ax-mulf ×:×
9 ffn ×:××Fn×
10 fnssresb ×Fn××01×01Fn01×0101×01×
11 8 9 10 mp2b ×01×01Fn01×0101×01×
12 7 11 mpbir ×01×01Fn01×01
13 ovres u01v01u×01×01v=uv
14 iimulcl u01v01uv01
15 13 14 eqeltrd u01v01u×01×01v01
16 15 rgen2 u01v01u×01×01v01
17 ffnov ×01×01:01×0101×01×01Fn01×01u01v01u×01×01v01
18 12 16 17 mpbir2an ×01×01:01×0101
19 iccssxr 0+∞*
20 xpss12 0+∞*0+∞*0+∞×0+∞*×*
21 19 19 20 mp2an 0+∞×0+∞*×*
22 xaddf +𝑒:*×**
23 ffn +𝑒:*×**+𝑒Fn*×*
24 fnssresb +𝑒Fn*×*+𝑒0+∞×0+∞Fn0+∞×0+∞0+∞×0+∞*×*
25 22 23 24 mp2b +𝑒0+∞×0+∞Fn0+∞×0+∞0+∞×0+∞*×*
26 21 25 mpbir +𝑒0+∞×0+∞Fn0+∞×0+∞
27 3 fneq1i +˙Fn0+∞×0+∞+𝑒0+∞×0+∞Fn0+∞×0+∞
28 26 27 mpbir +˙Fn0+∞×0+∞
29 3 oveqi a+˙b=a+𝑒0+∞×0+∞b
30 ovres a0+∞b0+∞a+𝑒0+∞×0+∞b=a+𝑒b
31 ge0xaddcl a0+∞b0+∞a+𝑒b0+∞
32 30 31 eqeltrd a0+∞b0+∞a+𝑒0+∞×0+∞b0+∞
33 29 32 eqeltrid a0+∞b0+∞a+˙b0+∞
34 33 rgen2 a0+∞b0+∞a+˙b0+∞
35 ffnov +˙:0+∞×0+∞0+∞+˙Fn0+∞×0+∞a0+∞b0+∞a+˙b0+∞
36 28 34 35 mpbir2an +˙:0+∞×0+∞0+∞
37 iitopon IITopOn01
38 letopon ordTopTopOn*
39 resttopon ordTopTopOn*0+∞*ordTop𝑡0+∞TopOn0+∞
40 38 19 39 mp2an ordTop𝑡0+∞TopOn0+∞
41 2 40 eqeltri JTopOn0+∞
42 3 oveqi Fu+˙Fv=Fu+𝑒0+∞×0+∞Fv
43 1 xrge0iifcnv F:011-1 onto0+∞F-1=y0+∞ify=+∞0ey
44 43 simpli F:011-1 onto0+∞
45 f1of F:011-1 onto0+∞F:010+∞
46 44 45 ax-mp F:010+∞
47 46 ffvelcdmi u01Fu0+∞
48 46 ffvelcdmi v01Fv0+∞
49 ovres Fu0+∞Fv0+∞Fu+𝑒0+∞×0+∞Fv=Fu+𝑒Fv
50 47 48 49 syl2an u01v01Fu+𝑒0+∞×0+∞Fv=Fu+𝑒Fv
51 42 50 eqtrid u01v01Fu+˙Fv=Fu+𝑒Fv
52 1 2 xrge0iifhom u01v01Fuv=Fu+𝑒Fv
53 13 eqcomd u01v01uv=u×01×01v
54 53 fveq2d u01v01Fuv=Fu×01×01v
55 51 52 54 3eqtr2rd u01v01Fu×01×01v=Fu+˙Fv
56 eqid mulGrpfld𝑠01=mulGrpfld𝑠01
57 56 iistmd mulGrpfld𝑠01TopMnd
58 cnfldex fldV
59 ovex 01V
60 eqid fld𝑠01=fld𝑠01
61 eqid mulGrpfld=mulGrpfld
62 60 61 mgpress fldV01VmulGrpfld𝑠01=mulGrpfld𝑠01
63 58 59 62 mp2an mulGrpfld𝑠01=mulGrpfld𝑠01
64 60 dfii4 II=TopOpenfld𝑠01
65 63 64 mgptopn II=TopOpenmulGrpfld𝑠01
66 cnfldbas =Basefld
67 61 66 mgpbas =BasemulGrpfld
68 cnfldmul ×=fld
69 61 68 mgpplusg ×=+mulGrpfld
70 8 9 ax-mp ×Fn×
71 67 56 69 70 5 ressplusf +𝑓mulGrpfld𝑠01=×01×01
72 71 eqcomi ×01×01=+𝑓mulGrpfld𝑠01
73 65 72 tmdcn mulGrpfld𝑠01TopMnd×01×01II×tIICnII
74 57 73 ax-mp ×01×01II×tIICnII
75 4 18 36 37 41 55 74 mndpluscn +˙J×tJCnJ