Metamath Proof Explorer


Theorem znfld

Description: The Z/nZ structure is a finite field when n is prime. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis zntos.y Y=/N
Assertion znfld NYField

Proof

Step Hyp Ref Expression
1 zntos.y Y=/N
2 prmnn NN
3 nnnn0 NN0
4 2 3 syl NN0
5 1 zncrng N0YCRing
6 4 5 syl NYCRing
7 crngring YCRingYRing
8 2 3 5 7 4syl NYRing
9 hash2 2𝑜=2
10 prmuz2 NN2
11 eluzle N22N
12 10 11 syl N2N
13 eqid BaseY=BaseY
14 1 13 znhash NBaseY=N
15 2 14 syl NBaseY=N
16 12 15 breqtrrd N2BaseY
17 9 16 eqbrtrid N2𝑜BaseY
18 2onn 2𝑜ω
19 nnfi 2𝑜ω2𝑜Fin
20 18 19 ax-mp 2𝑜Fin
21 fvex BaseYV
22 hashdom 2𝑜FinBaseYV2𝑜BaseY2𝑜BaseY
23 20 21 22 mp2an 2𝑜BaseY2𝑜BaseY
24 17 23 sylib N2𝑜BaseY
25 13 isnzr2 YNzRingYRing2𝑜BaseY
26 8 24 25 sylanbrc NYNzRing
27 eqid ℤRHomY=ℤRHomY
28 1 13 27 znzrhfo N0ℤRHomY:ontoBaseY
29 4 28 syl NℤRHomY:ontoBaseY
30 foelrn ℤRHomY:ontoBaseYxBaseYzx=ℤRHomYz
31 foelrn ℤRHomY:ontoBaseYyBaseYwy=ℤRHomYw
32 30 31 anim12dan ℤRHomY:ontoBaseYxBaseYyBaseYzx=ℤRHomYzwy=ℤRHomYw
33 29 32 sylan NxBaseYyBaseYzx=ℤRHomYzwy=ℤRHomYw
34 reeanv zwx=ℤRHomYzy=ℤRHomYwzx=ℤRHomYzwy=ℤRHomYw
35 euclemma NzwNzwNzNw
36 35 3expb NzwNzwNzNw
37 8 adantr NzwYRing
38 27 zrhrhm YRingℤRHomYringRingHomY
39 37 38 syl NzwℤRHomYringRingHomY
40 simprl Nzwz
41 simprr Nzww
42 zringbas =Basering
43 zringmulr ×=ring
44 eqid Y=Y
45 42 43 44 rhmmul ℤRHomYringRingHomYzwℤRHomYzw=ℤRHomYzYℤRHomYw
46 39 40 41 45 syl3anc NzwℤRHomYzw=ℤRHomYzYℤRHomYw
47 46 eqeq1d NzwℤRHomYzw=0YℤRHomYzYℤRHomYw=0Y
48 zmulcl zwzw
49 eqid 0Y=0Y
50 1 27 49 zndvds0 N0zwℤRHomYzw=0YNzw
51 4 48 50 syl2an NzwℤRHomYzw=0YNzw
52 47 51 bitr3d NzwℤRHomYzYℤRHomYw=0YNzw
53 1 27 49 zndvds0 N0zℤRHomYz=0YNz
54 4 40 53 syl2an2r NzwℤRHomYz=0YNz
55 1 27 49 zndvds0 N0wℤRHomYw=0YNw
56 4 41 55 syl2an2r NzwℤRHomYw=0YNw
57 54 56 orbi12d NzwℤRHomYz=0YℤRHomYw=0YNzNw
58 36 52 57 3bitr4d NzwℤRHomYzYℤRHomYw=0YℤRHomYz=0YℤRHomYw=0Y
59 58 biimpd NzwℤRHomYzYℤRHomYw=0YℤRHomYz=0YℤRHomYw=0Y
60 oveq12 x=ℤRHomYzy=ℤRHomYwxYy=ℤRHomYzYℤRHomYw
61 60 eqeq1d x=ℤRHomYzy=ℤRHomYwxYy=0YℤRHomYzYℤRHomYw=0Y
62 eqeq1 x=ℤRHomYzx=0YℤRHomYz=0Y
63 62 orbi1d x=ℤRHomYzx=0Yy=0YℤRHomYz=0Yy=0Y
64 eqeq1 y=ℤRHomYwy=0YℤRHomYw=0Y
65 64 orbi2d y=ℤRHomYwℤRHomYz=0Yy=0YℤRHomYz=0YℤRHomYw=0Y
66 63 65 sylan9bb x=ℤRHomYzy=ℤRHomYwx=0Yy=0YℤRHomYz=0YℤRHomYw=0Y
67 61 66 imbi12d x=ℤRHomYzy=ℤRHomYwxYy=0Yx=0Yy=0YℤRHomYzYℤRHomYw=0YℤRHomYz=0YℤRHomYw=0Y
68 59 67 syl5ibrcom Nzwx=ℤRHomYzy=ℤRHomYwxYy=0Yx=0Yy=0Y
69 68 rexlimdvva Nzwx=ℤRHomYzy=ℤRHomYwxYy=0Yx=0Yy=0Y
70 34 69 biimtrrid Nzx=ℤRHomYzwy=ℤRHomYwxYy=0Yx=0Yy=0Y
71 70 imp Nzx=ℤRHomYzwy=ℤRHomYwxYy=0Yx=0Yy=0Y
72 33 71 syldan NxBaseYyBaseYxYy=0Yx=0Yy=0Y
73 72 ralrimivva NxBaseYyBaseYxYy=0Yx=0Yy=0Y
74 13 44 49 isdomn YDomnYNzRingxBaseYyBaseYxYy=0Yx=0Yy=0Y
75 26 73 74 sylanbrc NYDomn
76 isidom YIDomnYCRingYDomn
77 6 75 76 sylanbrc NYIDomn
78 1 13 znfi NBaseYFin
79 2 78 syl NBaseYFin
80 13 fiidomfld BaseYFinYIDomnYField
81 79 80 syl NYIDomnYField
82 77 81 mpbid NYField