Metamath Proof Explorer


Theorem zorn2lem7

Description: Lemma for zorn2 . (Contributed by NM, 6-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F=recsfVιvC|uC¬uwv
zorn2lem.4 C=zA|granfgRz
zorn2lem.5 D=zA|gFxgRz
zorn2lem.7 H=zA|gFygRz
Assertion zorn2lem7 AdomcardRPoAssAROrsaArsrRar=aaAbA¬aRb

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F=recsfVιvC|uC¬uwv
2 zorn2lem.4 C=zA|granfgRz
3 zorn2lem.5 D=zA|gFxgRz
4 zorn2lem.7 H=zA|gFygRz
5 ween AdomcardwwWeA
6 1 2 3 zorn2lem4 RPoAwWeAxOnD=
7 imaeq2 x=yFx=Fy
8 7 raleqdv x=ygFxgRzgFygRz
9 8 rabbidv x=yzA|gFxgRz=zA|gFygRz
10 9 3 4 3eqtr4g x=yD=H
11 10 eqeq1d x=yD=H=
12 11 onminex xOnD=xOnD=yx¬H=
13 df-ne H¬H=
14 13 ralbii yxHyx¬H=
15 14 anbi2i D=yxHD=yx¬H=
16 15 rexbii xOnD=yxHxOnD=yx¬H=
17 12 16 sylibr xOnD=xOnD=yxH
18 1 2 3 4 zorn2lem5 wWeAxOnyxHFxA
19 18 a1i RPoAwWeAxOnyxHFxA
20 1 2 3 4 zorn2lem6 RPoAwWeAxOnyxHROrFx
21 19 20 jcad RPoAwWeAxOnyxHFxAROrFx
22 1 tfr1 FFnOn
23 fnfun FFnOnFunF
24 vex xV
25 24 funimaex FunFFxV
26 22 23 25 mp2b FxV
27 sseq1 s=FxsAFxA
28 soeq2 s=FxROrsROrFx
29 27 28 anbi12d s=FxsAROrsFxAROrFx
30 raleq s=FxrsrRar=arFxrRar=a
31 30 rexbidv s=FxaArsrRar=aaArFxrRar=a
32 29 31 imbi12d s=FxsAROrsaArsrRar=aFxAROrFxaArFxrRar=a
33 26 32 spcv ssAROrsaArsrRar=aFxAROrFxaArFxrRar=a
34 21 33 sylan9 RPoAssAROrsaArsrRar=awWeAxOnyxHaArFxrRar=a
35 34 adantld RPoAssAROrsaArsrRar=aD=wWeAxOnyxHaArFxrRar=a
36 35 imp RPoAssAROrsaArsrRar=aD=wWeAxOnyxHaArFxrRar=a
37 noel ¬b
38 18 sseld wWeAxOnyxHrFxrA
39 3anass rAaAbArAaAbA
40 potr RPoArAaAbArRaaRbrRb
41 39 40 sylan2br RPoArAaAbArRaaRbrRb
42 41 expcomd RPoArAaAbAaRbrRarRb
43 42 imp RPoArAaAbAaRbrRarRb
44 breq1 r=arRbaRb
45 44 biimprcd aRbr=arRb
46 45 adantl RPoArAaAbAaRbr=arRb
47 43 46 jaod RPoArAaAbAaRbrRar=arRb
48 47 exp42 RPoArAaAbAaRbrRar=arRb
49 38 48 sylan9r RPoAwWeAxOnyxHrFxaAbAaRbrRar=arRb
50 49 com24 RPoAwWeAxOnyxHaRbaAbArFxrRar=arRb
51 50 com23 RPoAwWeAxOnyxHaAbAaRbrFxrRar=arRb
52 51 imp31 RPoAwWeAxOnyxHaAbAaRbrFxrRar=arRb
53 52 a2d RPoAwWeAxOnyxHaAbAaRbrFxrRar=arFxrRb
54 53 ralimdv2 RPoAwWeAxOnyxHaAbAaRbrFxrRar=arFxrRb
55 breq1 r=grRbgRb
56 55 cbvralvw rFxrRbgFxgRb
57 breq2 z=bgRzgRb
58 57 ralbidv z=bgFxgRzgFxgRb
59 58 elrab bzA|gFxgRzbAgFxgRb
60 3 eqeq1i D=zA|gFxgRz=
61 eleq2 zA|gFxgRz=bzA|gFxgRzb
62 60 61 sylbi D=bzA|gFxgRzb
63 59 62 bitr3id D=bAgFxgRbb
64 63 biimpd D=bAgFxgRbb
65 64 expdimp D=bAgFxgRbb
66 56 65 biimtrid D=bArFxrRbb
67 54 66 sylan9r D=bARPoAwWeAxOnyxHaAbAaRbrFxrRar=ab
68 67 exp32 D=bARPoAwWeAxOnyxHaAbAaRbrFxrRar=ab
69 68 com34 D=bARPoAwWeAxOnyxHaAbArFxrRar=aaRbb
70 69 imp31 D=bARPoAwWeAxOnyxHaAbArFxrRar=aaRbb
71 37 70 mtoi D=bARPoAwWeAxOnyxHaAbArFxrRar=a¬aRb
72 71 exp42 D=bARPoAwWeAxOnyxHaAbArFxrRar=a¬aRb
73 72 exp4a D=bARPoAwWeAxOnyxHaAbArFxrRar=a¬aRb
74 73 com34 D=bARPoAwWeAxOnyxHbAaArFxrRar=a¬aRb
75 74 ex D=bARPoAwWeAxOnyxHbAaArFxrRar=a¬aRb
76 75 com4r bAD=bARPoAwWeAxOnyxHaArFxrRar=a¬aRb
77 76 pm2.43a bAD=RPoAwWeAxOnyxHaArFxrRar=a¬aRb
78 77 impd bAD=RPoAwWeAxOnyxHaArFxrRar=a¬aRb
79 78 com4l D=RPoAwWeAxOnyxHaArFxrRar=abA¬aRb
80 79 impd D=RPoAwWeAxOnyxHaArFxrRar=abA¬aRb
81 80 ralrimdv D=RPoAwWeAxOnyxHaArFxrRar=abA¬aRb
82 81 expd D=RPoAwWeAxOnyxHaArFxrRar=abA¬aRb
83 82 reximdvai D=RPoAwWeAxOnyxHaArFxrRar=aaAbA¬aRb
84 83 exp32 D=RPoAwWeAxOnyxHaArFxrRar=aaAbA¬aRb
85 84 com12 RPoAD=wWeAxOnyxHaArFxrRar=aaAbA¬aRb
86 85 adantr RPoAssAROrsaArsrRar=aD=wWeAxOnyxHaArFxrRar=aaAbA¬aRb
87 86 imp32 RPoAssAROrsaArsrRar=aD=wWeAxOnyxHaArFxrRar=aaAbA¬aRb
88 36 87 mpd RPoAssAROrsaArsrRar=aD=wWeAxOnyxHaAbA¬aRb
89 88 exp45 RPoAssAROrsaArsrRar=aD=wWeAxOnyxHaAbA¬aRb
90 89 com23 RPoAssAROrsaArsrRar=awWeAxOnD=yxHaAbA¬aRb
91 90 expdimp RPoAssAROrsaArsrRar=awWeAxOnD=yxHaAbA¬aRb
92 91 imp4a RPoAssAROrsaArsrRar=awWeAxOnD=yxHaAbA¬aRb
93 92 com3l xOnD=yxHRPoAssAROrsaArsrRar=awWeAaAbA¬aRb
94 93 rexlimiv xOnD=yxHRPoAssAROrsaArsrRar=awWeAaAbA¬aRb
95 6 17 94 3syl RPoAwWeARPoAssAROrsaArsrRar=awWeAaAbA¬aRb
96 95 adantlr RPoAssAROrsaArsrRar=awWeARPoAssAROrsaArsrRar=awWeAaAbA¬aRb
97 96 pm2.43i RPoAssAROrsaArsrRar=awWeAaAbA¬aRb
98 97 expcom wWeARPoAssAROrsaArsrRar=aaAbA¬aRb
99 98 exlimiv wwWeARPoAssAROrsaArsrRar=aaAbA¬aRb
100 5 99 sylbi AdomcardRPoAssAROrsaArsrRar=aaAbA¬aRb
101 100 3impib AdomcardRPoAssAROrsaArsrRar=aaAbA¬aRb