| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth.1 |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 2 |
|
abelth.2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) |
| 3 |
|
abelth.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 4 |
|
abelth.4 |
⊢ ( 𝜑 → 0 ≤ 𝑀 ) |
| 5 |
|
abelth.5 |
⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } |
| 6 |
|
abelth.6 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) |
| 7 |
|
abelth.7 |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) |
| 8 |
|
abelthlem6.1 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) |
| 9 |
8
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 12 |
11
|
sumeq2sdv |
⊢ ( 𝑥 = 𝑋 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 13 |
|
sumex |
⊢ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
| 14 |
12 6 13
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑆 → ( 𝐹 ‘ 𝑋 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 16 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 17 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 18 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑛 ) ) |
| 20 |
18 19
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 22 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
| 23 |
20 21 22
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 25 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 26 |
5
|
ssrab3 |
⊢ 𝑆 ⊆ ℂ |
| 27 |
26 9
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 28 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
| 29 |
27 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
| 30 |
25 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 31 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
| 32 |
31 19
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 33 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 34 |
|
ovex |
⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
| 35 |
32 33 34
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 37 |
16 17 25
|
serf |
⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 38 |
37
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ∈ ℂ ) |
| 39 |
38 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 40 |
1 2 3 4 5
|
abelthlem2 |
⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 41 |
40
|
simprd |
⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 42 |
41 8
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 43 |
1 2 3 4 5 6 7
|
abelthlem5 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 44 |
42 43
|
mpdan |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 45 |
16 17 36 39 44
|
isumclim2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 46 |
|
seqex |
⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V ) |
| 48 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 50 |
|
oveq1 |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 − 1 ) = ( 𝑖 − 1 ) ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑖 − 1 ) ) ) |
| 52 |
51
|
sumeq1d |
⊢ ( 𝑘 = 𝑖 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑖 ) ) |
| 54 |
52 53
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 55 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) |
| 56 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V |
| 57 |
54 55 56
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 59 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 0 ... ( 𝑖 − 1 ) ) ∈ Fin ) |
| 60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 61 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 62 |
|
ffvelcdm |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 63 |
60 61 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 64 |
59 63
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 65 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
| 66 |
27 65
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
| 67 |
64 66
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑖 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
| 68 |
58 67
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 69 |
17
|
peano2zd |
⊢ ( 𝜑 → ( 0 + 1 ) ∈ ℤ ) |
| 70 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 71 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 72 |
71
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 73 |
70 72
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
| 74 |
73
|
eleq2i |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 75 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 76 |
75
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 77 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) |
| 79 |
77 78
|
oveq12d |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( 𝑘 = ( 𝑛 − 1 ) → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 81 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) |
| 82 |
|
ovex |
⊢ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ∈ V |
| 83 |
80 81 82
|
fvmpt |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 84 |
76 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 85 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 86 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 88 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 89 |
88
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ V |
| 90 |
89
|
shftval |
⊢ ( ( 1 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) ) |
| 91 |
85 87 90
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ ( 𝑛 − 1 ) ) ) |
| 92 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) |
| 93 |
76 16
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 94 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 95 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 96 |
94 95 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 97 |
92 93 96
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ) |
| 98 |
|
expm1t |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
| 99 |
27 98
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
| 100 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ ℂ ) |
| 101 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 102 |
27 75 101
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 103 |
100 102
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) = ( ( 𝑋 ↑ ( 𝑛 − 1 ) ) · 𝑋 ) ) |
| 104 |
99 103
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ↑ 𝑛 ) = ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) |
| 105 |
97 104
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 106 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 108 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 − 1 ) = ( 𝑛 − 1 ) ) |
| 109 |
108
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 𝑛 − 1 ) ) ) |
| 110 |
109
|
sumeq1d |
⊢ ( 𝑘 = 𝑛 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) |
| 111 |
110 19
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 112 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V |
| 113 |
111 55 112
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 114 |
107 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 115 |
|
ffvelcdm |
⊢ ( ( seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 116 |
37 75 115
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 117 |
100 116 102
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 118 |
105 114 117
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ ( 𝑛 − 1 ) ) · ( 𝑋 ↑ ( 𝑛 − 1 ) ) ) ) ) |
| 119 |
84 91 118
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 120 |
74 119
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) |
| 121 |
69 120
|
seqfeq |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) = seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) |
| 122 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) |
| 123 |
122 53
|
oveq12d |
⊢ ( 𝑘 = 𝑖 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 124 |
|
ovex |
⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V |
| 125 |
123 33 124
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 127 |
37
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 128 |
127 66
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
| 129 |
126 128
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 130 |
123
|
oveq2d |
⊢ ( 𝑘 = 𝑖 → ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 131 |
|
ovex |
⊢ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ∈ V |
| 132 |
130 81 131
|
fvmpt |
⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 134 |
126
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 135 |
133 134
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( 𝑋 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) ) |
| 136 |
16 17 27 45 129 135
|
isermulc2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 137 |
|
0z |
⊢ 0 ∈ ℤ |
| 138 |
|
1z |
⊢ 1 ∈ ℤ |
| 139 |
89
|
isershft |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ↔ seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 140 |
137 138 139
|
mp2an |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ↔ seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 141 |
136 140
|
sylib |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑋 · ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) shift 1 ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 142 |
121 141
|
eqbrtrrd |
⊢ ( 𝜑 → seq ( 0 + 1 ) ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 143 |
16 49 68 142
|
clim2ser2 |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) ) |
| 144 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) ) |
| 145 |
137 144
|
ax-mp |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) |
| 146 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 − 1 ) = ( 0 − 1 ) ) |
| 147 |
146
|
oveq2d |
⊢ ( 𝑘 = 0 → ( 0 ... ( 𝑘 − 1 ) ) = ( 0 ... ( 0 − 1 ) ) ) |
| 148 |
|
risefall0lem |
⊢ ( 0 ... ( 0 − 1 ) ) = ∅ |
| 149 |
147 148
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ... ( 𝑘 − 1 ) ) = ∅ ) |
| 150 |
149
|
sumeq1d |
⊢ ( 𝑘 = 0 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = Σ 𝑚 ∈ ∅ ( 𝐴 ‘ 𝑚 ) ) |
| 151 |
|
sum0 |
⊢ Σ 𝑚 ∈ ∅ ( 𝐴 ‘ 𝑚 ) = 0 |
| 152 |
150 151
|
eqtrdi |
⊢ ( 𝑘 = 0 → Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) = 0 ) |
| 153 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 0 ) ) |
| 154 |
152 153
|
oveq12d |
⊢ ( 𝑘 = 0 → ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) = ( 0 · ( 𝑋 ↑ 0 ) ) ) |
| 155 |
|
ovex |
⊢ ( 0 · ( 𝑋 ↑ 0 ) ) ∈ V |
| 156 |
154 55 155
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) ) |
| 157 |
48 156
|
ax-mp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) |
| 158 |
145 157
|
eqtri |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = ( 0 · ( 𝑋 ↑ 0 ) ) |
| 159 |
|
expcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝑋 ↑ 0 ) ∈ ℂ ) |
| 160 |
27 48 159
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 ↑ 0 ) ∈ ℂ ) |
| 161 |
160
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝑋 ↑ 0 ) ) = 0 ) |
| 162 |
158 161
|
eqtrid |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) = 0 ) |
| 163 |
162
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + 0 ) ) |
| 164 |
16 17 36 39 44
|
isumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 165 |
27 164
|
mulcld |
⊢ ( 𝜑 → ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 166 |
165
|
addridd |
⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + 0 ) = ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 167 |
163 166
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 0 ) ) = ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 168 |
143 167
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 169 |
16 17 129
|
serf |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 170 |
169
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 171 |
16 17 68
|
serf |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) : ℕ0 ⟶ ℂ ) |
| 172 |
171
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 173 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℕ0 ) |
| 174 |
173 16
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ( ℤ≥ ‘ 0 ) ) |
| 175 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → 𝜑 ) |
| 176 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑖 ) → 𝑛 ∈ ℕ0 ) |
| 177 |
36 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 178 |
175 176 177
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 179 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 180 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 0 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
| 181 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 182 |
181 95 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 183 |
180 182
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 184 |
183 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 185 |
179 184
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 186 |
175 176 185
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 187 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑚 ) ) |
| 188 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 189 |
188 16
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
| 190 |
|
elfznn0 |
⊢ ( 𝑚 ∈ ( 0 ... 𝑛 ) → 𝑚 ∈ ℕ0 ) |
| 191 |
181 190 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 192 |
187 189 191
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( 𝐴 ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) |
| 193 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 194 |
189 191 193
|
fsumm1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → Σ 𝑚 ∈ ( 0 ... 𝑛 ) ( 𝐴 ‘ 𝑚 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) ) |
| 195 |
192 194
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) ) |
| 196 |
195
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) = ( ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) ) |
| 197 |
183 25
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) + ( 𝐴 ‘ 𝑛 ) ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) = ( 𝐴 ‘ 𝑛 ) ) |
| 198 |
196 197
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) ) |
| 199 |
198
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 200 |
38 183 29
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 201 |
199 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 202 |
36 179
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 203 |
201 24 202
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
| 204 |
175 176 203
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝑖 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
| 205 |
174 178 186 204
|
sersub |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) − ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( Σ 𝑚 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑖 ) ) ) |
| 206 |
16 17 45 47 168 170 172 205
|
climsub |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 207 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 208 |
207 27 164
|
subdird |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 209 |
164
|
mullidd |
⊢ ( 𝜑 → ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 210 |
209
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 211 |
208 210
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) − ( 𝑋 · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 212 |
206 211
|
breqtrrd |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 213 |
16 17 24 30 212
|
isumclim |
⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 214 |
15 213
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |