| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 2 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( Fil ‘ ∪ 𝐹 ) = ( Fil ‘ 𝑋 ) ) |
| 4 |
1 3
|
eleqtrrd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 5 |
|
nss |
⊢ ( ¬ 𝑥 ⊆ { ∅ } ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ) |
| 7 |
|
ssel2 |
⊢ ( ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 8 |
7
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 9 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( 𝑦 ∈ 𝐹 ∨ 𝑦 ∈ { ∅ } ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ 𝐹 ∨ 𝑦 ∈ { ∅ } ) ) |
| 11 |
10
|
orcomd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ { ∅ } ∨ 𝑦 ∈ 𝐹 ) ) |
| 12 |
11
|
ord |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ¬ 𝑦 ∈ { ∅ } → 𝑦 ∈ 𝐹 ) ) |
| 13 |
12
|
impr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑦 ∈ 𝐹 ) |
| 14 |
|
uniss |
⊢ ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ⊆ ∪ ( 𝐹 ∪ { ∅ } ) ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ⊆ ∪ ( 𝐹 ∪ { ∅ } ) ) |
| 16 |
|
uniun |
⊢ ∪ ( 𝐹 ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∪ { ∅ } ) |
| 17 |
|
0ex |
⊢ ∅ ∈ V |
| 18 |
17
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 19 |
18
|
uneq2i |
⊢ ( ∪ 𝐹 ∪ ∪ { ∅ } ) = ( ∪ 𝐹 ∪ ∅ ) |
| 20 |
|
un0 |
⊢ ( ∪ 𝐹 ∪ ∅ ) = ∪ 𝐹 |
| 21 |
16 19 20
|
3eqtrri |
⊢ ∪ 𝐹 = ∪ ( 𝐹 ∪ { ∅ } ) |
| 22 |
15 21
|
sseqtrrdi |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ⊆ ∪ 𝐹 ) |
| 23 |
|
elssuni |
⊢ ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ ∪ 𝑥 ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → 𝑦 ⊆ ∪ 𝑥 ) |
| 25 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ ( 𝑦 ∈ 𝐹 ∧ ∪ 𝑥 ⊆ ∪ 𝐹 ∧ 𝑦 ⊆ ∪ 𝑥 ) ) → ∪ 𝑥 ∈ 𝐹 ) |
| 26 |
6 13 22 24 25
|
syl13anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ∈ 𝐹 ) |
| 27 |
|
elun1 |
⊢ ( ∪ 𝑥 ∈ 𝐹 → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) ∧ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 29 |
28
|
ex |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 30 |
29
|
exlimdv |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 31 |
5 30
|
biimtrid |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ( ¬ 𝑥 ⊆ { ∅ } → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 32 |
|
uni0b |
⊢ ( ∪ 𝑥 = ∅ ↔ 𝑥 ⊆ { ∅ } ) |
| 33 |
|
ssun2 |
⊢ { ∅ } ⊆ ( 𝐹 ∪ { ∅ } ) |
| 34 |
17
|
snid |
⊢ ∅ ∈ { ∅ } |
| 35 |
33 34
|
sselii |
⊢ ∅ ∈ ( 𝐹 ∪ { ∅ } ) |
| 36 |
|
eleq1 |
⊢ ( ∪ 𝑥 = ∅ → ( ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ∅ ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 37 |
35 36
|
mpbiri |
⊢ ( ∪ 𝑥 = ∅ → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 38 |
32 37
|
sylbir |
⊢ ( 𝑥 ⊆ { ∅ } → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 39 |
31 38
|
pm2.61d2 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 40 |
39
|
ex |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 41 |
40
|
alrimiv |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ) |
| 42 |
|
filin |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 ) |
| 43 |
|
elun1 |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐹 → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 45 |
44
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 47 |
|
elsni |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
| 48 |
|
ineq2 |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ∅ ) ) |
| 49 |
|
in0 |
⊢ ( 𝑥 ∩ ∅ ) = ∅ |
| 50 |
48 49
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 51 |
50 35
|
eqeltrdi |
⊢ ( 𝑦 = ∅ → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 52 |
47 51
|
syl |
⊢ ( 𝑦 ∈ { ∅ } → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 53 |
52
|
rgen |
⊢ ∀ 𝑦 ∈ { ∅ } ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) |
| 54 |
|
ralun |
⊢ ( ( ∀ 𝑦 ∈ 𝐹 ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ∧ ∀ 𝑦 ∈ { ∅ } ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 55 |
46 53 54
|
sylancl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 56 |
55
|
ralrimiva |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 57 |
|
elsni |
⊢ ( 𝑥 ∈ { ∅ } → 𝑥 = ∅ ) |
| 58 |
|
ineq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝑦 ) = ( ∅ ∩ 𝑦 ) ) |
| 59 |
|
0in |
⊢ ( ∅ ∩ 𝑦 ) = ∅ |
| 60 |
58 59
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 61 |
60 35
|
eqeltrdi |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 62 |
61
|
ralrimivw |
⊢ ( 𝑥 = ∅ → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 63 |
57 62
|
syl |
⊢ ( 𝑥 ∈ { ∅ } → ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 64 |
63
|
rgen |
⊢ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) |
| 65 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ∧ ∀ 𝑥 ∈ { ∅ } ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) → ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 66 |
56 64 65
|
sylancl |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 67 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 68 |
|
unexg |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ { ∅ } ∈ V ) → ( 𝐹 ∪ { ∅ } ) ∈ V ) |
| 69 |
67 68
|
mpan2 |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ V ) |
| 70 |
|
istopg |
⊢ ( ( 𝐹 ∪ { ∅ } ) ∈ V → ( ( 𝐹 ∪ { ∅ } ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) ) ) |
| 71 |
69 70
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝐹 ∪ { ∅ } ) ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ ( 𝐹 ∪ { ∅ } ) → ∪ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∀ 𝑦 ∈ ( 𝐹 ∪ { ∅ } ) ( 𝑥 ∩ 𝑦 ) ∈ ( 𝐹 ∪ { ∅ } ) ) ) ) |
| 72 |
41 66 71
|
mpbir2and |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ Top ) |
| 73 |
21
|
cldopn |
⊢ ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( ∪ 𝐹 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ∅ } ) ) |
| 74 |
|
elun |
⊢ ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ∨ ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } ) ) |
| 75 |
73 74
|
sylib |
⊢ ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ∨ ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } ) ) |
| 76 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ↔ ( 𝑥 ∈ 𝐹 ∨ 𝑥 ∈ { ∅ } ) ) |
| 77 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → 𝐹 ∈ ( fBas ‘ ∪ 𝐹 ) ) |
| 78 |
|
fbncp |
⊢ ( ( 𝐹 ∈ ( fBas ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ¬ ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ) |
| 79 |
77 78
|
sylan |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ¬ ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ) |
| 80 |
79
|
pm2.21d |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ 𝐹 ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) |
| 81 |
80
|
ex |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ 𝐹 → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 82 |
57
|
a1i13 |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ { ∅ } → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 83 |
81 82
|
jaod |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝑥 ∈ 𝐹 ∨ 𝑥 ∈ { ∅ } ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 84 |
76 83
|
biimtrid |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 → 𝑥 = ∅ ) ) |
| 86 |
|
elsni |
⊢ ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } → ( ∪ 𝐹 ∖ 𝑥 ) = ∅ ) |
| 87 |
|
elssuni |
⊢ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → 𝑥 ⊆ ∪ ( 𝐹 ∪ { ∅ } ) ) |
| 88 |
87 21
|
sseqtrrdi |
⊢ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) → 𝑥 ⊆ ∪ 𝐹 ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → 𝑥 ⊆ ∪ 𝐹 ) |
| 90 |
|
ssdif0 |
⊢ ( ∪ 𝐹 ⊆ 𝑥 ↔ ( ∪ 𝐹 ∖ 𝑥 ) = ∅ ) |
| 91 |
90
|
biimpri |
⊢ ( ( ∪ 𝐹 ∖ 𝑥 ) = ∅ → ∪ 𝐹 ⊆ 𝑥 ) |
| 92 |
|
eqss |
⊢ ( 𝑥 = ∪ 𝐹 ↔ ( 𝑥 ⊆ ∪ 𝐹 ∧ ∪ 𝐹 ⊆ 𝑥 ) ) |
| 93 |
92
|
simplbi2 |
⊢ ( 𝑥 ⊆ ∪ 𝐹 → ( ∪ 𝐹 ⊆ 𝑥 → 𝑥 = ∪ 𝐹 ) ) |
| 94 |
89 91 93
|
syl2im |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) = ∅ → 𝑥 = ∪ 𝐹 ) ) |
| 95 |
86 94
|
syl5 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } → 𝑥 = ∪ 𝐹 ) ) |
| 96 |
85 95
|
orim12d |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( ( ( ∪ 𝐹 ∖ 𝑥 ) ∈ 𝐹 ∨ ( ∪ 𝐹 ∖ 𝑥 ) ∈ { ∅ } ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) ) |
| 97 |
75 96
|
syl5 |
⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) ∧ 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ) → ( 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) ) |
| 98 |
97
|
expimpd |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) → ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) ) |
| 99 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ↔ ( 𝑥 ∈ ( 𝐹 ∪ { ∅ } ) ∧ 𝑥 ∈ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ) |
| 100 |
|
vex |
⊢ 𝑥 ∈ V |
| 101 |
100
|
elpr |
⊢ ( 𝑥 ∈ { ∅ , ∪ 𝐹 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = ∪ 𝐹 ) ) |
| 102 |
98 99 101
|
3imtr4g |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) → 𝑥 ∈ { ∅ , ∪ 𝐹 } ) ) |
| 103 |
102
|
ssrdv |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ⊆ { ∅ , ∪ 𝐹 } ) |
| 104 |
21
|
isconn2 |
⊢ ( ( 𝐹 ∪ { ∅ } ) ∈ Conn ↔ ( ( 𝐹 ∪ { ∅ } ) ∈ Top ∧ ( ( 𝐹 ∪ { ∅ } ) ∩ ( Clsd ‘ ( 𝐹 ∪ { ∅ } ) ) ) ⊆ { ∅ , ∪ 𝐹 } ) ) |
| 105 |
72 103 104
|
sylanbrc |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐹 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) |
| 106 |
4 105
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { ∅ } ) ∈ Conn ) |