| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierswlem.t |
⊢ 𝑇 = ( 2 · π ) |
| 2 |
|
fourierswlem.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 3 |
|
fourierswlem.x |
⊢ 𝑋 ∈ ℝ |
| 4 |
|
fourierswlem.y |
⊢ 𝑌 = if ( ( 𝑋 mod π ) = 0 , 0 , ( 𝐹 ‘ 𝑋 ) ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → 2 ∥ ( 𝑋 / π ) ) |
| 6 |
|
2z |
⊢ 2 ∈ ℤ |
| 7 |
6
|
a1i |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → 2 ∈ ℤ ) |
| 8 |
|
pirp |
⊢ π ∈ ℝ+ |
| 9 |
|
mod0 |
⊢ ( ( 𝑋 ∈ ℝ ∧ π ∈ ℝ+ ) → ( ( 𝑋 mod π ) = 0 ↔ ( 𝑋 / π ) ∈ ℤ ) ) |
| 10 |
3 8 9
|
mp2an |
⊢ ( ( 𝑋 mod π ) = 0 ↔ ( 𝑋 / π ) ∈ ℤ ) |
| 11 |
10
|
biimpi |
⊢ ( ( 𝑋 mod π ) = 0 → ( 𝑋 / π ) ∈ ℤ ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( 𝑋 / π ) ∈ ℤ ) |
| 13 |
|
divides |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑋 / π ) ∈ ℤ ) → ( 2 ∥ ( 𝑋 / π ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) ) |
| 14 |
7 12 13
|
syl2anc |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( 2 ∥ ( 𝑋 / π ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) ) |
| 15 |
5 14
|
mpbid |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) |
| 16 |
|
2cnd |
⊢ ( 𝑘 ∈ ℤ → 2 ∈ ℂ ) |
| 17 |
|
picn |
⊢ π ∈ ℂ |
| 18 |
17
|
a1i |
⊢ ( 𝑘 ∈ ℤ → π ∈ ℂ ) |
| 19 |
|
zcn |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) |
| 20 |
16 18 19
|
mulassd |
⊢ ( 𝑘 ∈ ℤ → ( ( 2 · π ) · 𝑘 ) = ( 2 · ( π · 𝑘 ) ) ) |
| 21 |
18 19
|
mulcld |
⊢ ( 𝑘 ∈ ℤ → ( π · 𝑘 ) ∈ ℂ ) |
| 22 |
16 21
|
mulcomd |
⊢ ( 𝑘 ∈ ℤ → ( 2 · ( π · 𝑘 ) ) = ( ( π · 𝑘 ) · 2 ) ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝑘 ∈ ℤ → ( ( 2 · π ) · 𝑘 ) = ( ( π · 𝑘 ) · 2 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( ( 2 · π ) · 𝑘 ) = ( ( π · 𝑘 ) · 2 ) ) |
| 25 |
18 19 16
|
mulassd |
⊢ ( 𝑘 ∈ ℤ → ( ( π · 𝑘 ) · 2 ) = ( π · ( 𝑘 · 2 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( ( π · 𝑘 ) · 2 ) = ( π · ( 𝑘 · 2 ) ) ) |
| 27 |
|
id |
⊢ ( ( 𝑘 · 2 ) = ( 𝑋 / π ) → ( 𝑘 · 2 ) = ( 𝑋 / π ) ) |
| 28 |
27
|
eqcomd |
⊢ ( ( 𝑘 · 2 ) = ( 𝑋 / π ) → ( 𝑋 / π ) = ( 𝑘 · 2 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( 𝑋 / π ) = ( 𝑘 · 2 ) ) |
| 30 |
3
|
recni |
⊢ 𝑋 ∈ ℂ |
| 31 |
30
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → 𝑋 ∈ ℂ ) |
| 32 |
17
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → π ∈ ℂ ) |
| 33 |
19
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → 𝑘 ∈ ℂ ) |
| 34 |
|
2cnd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → 2 ∈ ℂ ) |
| 35 |
33 34
|
mulcld |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( 𝑘 · 2 ) ∈ ℂ ) |
| 36 |
|
pire |
⊢ π ∈ ℝ |
| 37 |
|
pipos |
⊢ 0 < π |
| 38 |
36 37
|
gt0ne0ii |
⊢ π ≠ 0 |
| 39 |
38
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → π ≠ 0 ) |
| 40 |
31 32 35 39
|
divmuld |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( ( 𝑋 / π ) = ( 𝑘 · 2 ) ↔ ( π · ( 𝑘 · 2 ) ) = 𝑋 ) ) |
| 41 |
29 40
|
mpbid |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( π · ( 𝑘 · 2 ) ) = 𝑋 ) |
| 42 |
24 26 41
|
3eqtrrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → 𝑋 = ( ( 2 · π ) · 𝑘 ) ) |
| 43 |
1
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → 𝑇 = ( 2 · π ) ) |
| 44 |
42 43
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( 𝑋 / 𝑇 ) = ( ( ( 2 · π ) · 𝑘 ) / ( 2 · π ) ) ) |
| 45 |
16 18
|
mulcld |
⊢ ( 𝑘 ∈ ℤ → ( 2 · π ) ∈ ℂ ) |
| 46 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 47 |
46
|
a1i |
⊢ ( 𝑘 ∈ ℤ → 2 ≠ 0 ) |
| 48 |
38
|
a1i |
⊢ ( 𝑘 ∈ ℤ → π ≠ 0 ) |
| 49 |
16 18 47 48
|
mulne0d |
⊢ ( 𝑘 ∈ ℤ → ( 2 · π ) ≠ 0 ) |
| 50 |
19 45 49
|
divcan3d |
⊢ ( 𝑘 ∈ ℤ → ( ( ( 2 · π ) · 𝑘 ) / ( 2 · π ) ) = 𝑘 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( ( ( 2 · π ) · 𝑘 ) / ( 2 · π ) ) = 𝑘 ) |
| 52 |
44 51
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( 𝑋 / 𝑇 ) = 𝑘 ) |
| 53 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → 𝑘 ∈ ℤ ) |
| 54 |
52 53
|
eqeltrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑘 · 2 ) = ( 𝑋 / π ) ) → ( 𝑋 / 𝑇 ) ∈ ℤ ) |
| 55 |
54
|
ex |
⊢ ( 𝑘 ∈ ℤ → ( ( 𝑘 · 2 ) = ( 𝑋 / π ) → ( 𝑋 / 𝑇 ) ∈ ℤ ) ) |
| 56 |
55
|
a1i |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( 𝑘 ∈ ℤ → ( ( 𝑘 · 2 ) = ( 𝑋 / π ) → ( 𝑋 / 𝑇 ) ∈ ℤ ) ) ) |
| 57 |
56
|
rexlimdv |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 2 ) = ( 𝑋 / π ) → ( 𝑋 / 𝑇 ) ∈ ℤ ) ) |
| 58 |
15 57
|
mpd |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( 𝑋 / 𝑇 ) ∈ ℤ ) |
| 59 |
|
2re |
⊢ 2 ∈ ℝ |
| 60 |
59 36
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 61 |
1 60
|
eqeltri |
⊢ 𝑇 ∈ ℝ |
| 62 |
|
2pos |
⊢ 0 < 2 |
| 63 |
59 36 62 37
|
mulgt0ii |
⊢ 0 < ( 2 · π ) |
| 64 |
63 1
|
breqtrri |
⊢ 0 < 𝑇 |
| 65 |
61 64
|
elrpii |
⊢ 𝑇 ∈ ℝ+ |
| 66 |
|
mod0 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) → ( ( 𝑋 mod 𝑇 ) = 0 ↔ ( 𝑋 / 𝑇 ) ∈ ℤ ) ) |
| 67 |
3 65 66
|
mp2an |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 ↔ ( 𝑋 / 𝑇 ) ∈ ℤ ) |
| 68 |
58 67
|
sylibr |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( 𝑋 mod 𝑇 ) = 0 ) |
| 69 |
68
|
orcd |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ 2 ∥ ( 𝑋 / π ) ) → ( ( 𝑋 mod 𝑇 ) = 0 ∨ ( 𝑋 mod 𝑇 ) = π ) ) |
| 70 |
|
odd2np1 |
⊢ ( ( 𝑋 / π ) ∈ ℤ → ( ¬ 2 ∥ ( 𝑋 / π ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) ) |
| 71 |
10 70
|
sylbi |
⊢ ( ( 𝑋 mod π ) = 0 → ( ¬ 2 ∥ ( 𝑋 / π ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) ) |
| 72 |
71
|
biimpa |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ 2 ∥ ( 𝑋 / π ) ) → ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) |
| 73 |
16 19
|
mulcld |
⊢ ( 𝑘 ∈ ℤ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 75 |
|
1cnd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → 1 ∈ ℂ ) |
| 76 |
17
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → π ∈ ℂ ) |
| 77 |
74 75 76
|
adddird |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( ( 2 · 𝑘 ) + 1 ) · π ) = ( ( ( 2 · 𝑘 ) · π ) + ( 1 · π ) ) ) |
| 78 |
16 19
|
mulcomd |
⊢ ( 𝑘 ∈ ℤ → ( 2 · 𝑘 ) = ( 𝑘 · 2 ) ) |
| 79 |
78
|
oveq1d |
⊢ ( 𝑘 ∈ ℤ → ( ( 2 · 𝑘 ) · π ) = ( ( 𝑘 · 2 ) · π ) ) |
| 80 |
19 16 18
|
mulassd |
⊢ ( 𝑘 ∈ ℤ → ( ( 𝑘 · 2 ) · π ) = ( 𝑘 · ( 2 · π ) ) ) |
| 81 |
1
|
eqcomi |
⊢ ( 2 · π ) = 𝑇 |
| 82 |
81
|
a1i |
⊢ ( 𝑘 ∈ ℤ → ( 2 · π ) = 𝑇 ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 · ( 2 · π ) ) = ( 𝑘 · 𝑇 ) ) |
| 84 |
79 80 83
|
3eqtrd |
⊢ ( 𝑘 ∈ ℤ → ( ( 2 · 𝑘 ) · π ) = ( 𝑘 · 𝑇 ) ) |
| 85 |
17
|
mullidi |
⊢ ( 1 · π ) = π |
| 86 |
85
|
a1i |
⊢ ( 𝑘 ∈ ℤ → ( 1 · π ) = π ) |
| 87 |
84 86
|
oveq12d |
⊢ ( 𝑘 ∈ ℤ → ( ( ( 2 · 𝑘 ) · π ) + ( 1 · π ) ) = ( ( 𝑘 · 𝑇 ) + π ) ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( ( 2 · 𝑘 ) · π ) + ( 1 · π ) ) = ( ( 𝑘 · 𝑇 ) + π ) ) |
| 89 |
1 45
|
eqeltrid |
⊢ ( 𝑘 ∈ ℤ → 𝑇 ∈ ℂ ) |
| 90 |
19 89
|
mulcld |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 · 𝑇 ) ∈ ℂ ) |
| 91 |
90 18
|
addcomd |
⊢ ( 𝑘 ∈ ℤ → ( ( 𝑘 · 𝑇 ) + π ) = ( π + ( 𝑘 · 𝑇 ) ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( 𝑘 · 𝑇 ) + π ) = ( π + ( 𝑘 · 𝑇 ) ) ) |
| 93 |
77 88 92
|
3eqtrrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( π + ( 𝑘 · 𝑇 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) · π ) ) |
| 94 |
|
peano2cn |
⊢ ( ( 2 · 𝑘 ) ∈ ℂ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 95 |
73 94
|
syl |
⊢ ( 𝑘 ∈ ℤ → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 96 |
95 18
|
mulcomd |
⊢ ( 𝑘 ∈ ℤ → ( ( ( 2 · 𝑘 ) + 1 ) · π ) = ( π · ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( ( 2 · 𝑘 ) + 1 ) · π ) = ( π · ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 98 |
|
id |
⊢ ( ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) → ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) |
| 99 |
98
|
eqcomd |
⊢ ( ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) → ( 𝑋 / π ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( 𝑋 / π ) = ( ( 2 · 𝑘 ) + 1 ) ) |
| 101 |
30
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → 𝑋 ∈ ℂ ) |
| 102 |
95
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
| 103 |
38
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → π ≠ 0 ) |
| 104 |
101 76 102 103
|
divmuld |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( 𝑋 / π ) = ( ( 2 · 𝑘 ) + 1 ) ↔ ( π · ( ( 2 · 𝑘 ) + 1 ) ) = 𝑋 ) ) |
| 105 |
100 104
|
mpbid |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( π · ( ( 2 · 𝑘 ) + 1 ) ) = 𝑋 ) |
| 106 |
93 97 105
|
3eqtrrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → 𝑋 = ( π + ( 𝑘 · 𝑇 ) ) ) |
| 107 |
106
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( 𝑋 mod 𝑇 ) = ( ( π + ( 𝑘 · 𝑇 ) ) mod 𝑇 ) ) |
| 108 |
|
modcyc |
⊢ ( ( π ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( π + ( 𝑘 · 𝑇 ) ) mod 𝑇 ) = ( π mod 𝑇 ) ) |
| 109 |
36 65 108
|
mp3an12 |
⊢ ( 𝑘 ∈ ℤ → ( ( π + ( 𝑘 · 𝑇 ) ) mod 𝑇 ) = ( π mod 𝑇 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( ( π + ( 𝑘 · 𝑇 ) ) mod 𝑇 ) = ( π mod 𝑇 ) ) |
| 111 |
36
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → π ∈ ℝ ) |
| 112 |
65
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → 𝑇 ∈ ℝ+ ) |
| 113 |
|
0re |
⊢ 0 ∈ ℝ |
| 114 |
113 36 37
|
ltleii |
⊢ 0 ≤ π |
| 115 |
114
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → 0 ≤ π ) |
| 116 |
|
2timesgt |
⊢ ( π ∈ ℝ+ → π < ( 2 · π ) ) |
| 117 |
8 116
|
ax-mp |
⊢ π < ( 2 · π ) |
| 118 |
117 1
|
breqtrri |
⊢ π < 𝑇 |
| 119 |
118
|
a1i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → π < 𝑇 ) |
| 120 |
|
modid |
⊢ ( ( ( π ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) ∧ ( 0 ≤ π ∧ π < 𝑇 ) ) → ( π mod 𝑇 ) = π ) |
| 121 |
111 112 115 119 120
|
syl22anc |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( π mod 𝑇 ) = π ) |
| 122 |
107 110 121
|
3eqtrd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) ) → ( 𝑋 mod 𝑇 ) = π ) |
| 123 |
122
|
ex |
⊢ ( 𝑘 ∈ ℤ → ( ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) → ( 𝑋 mod 𝑇 ) = π ) ) |
| 124 |
123
|
a1i |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ 2 ∥ ( 𝑋 / π ) ) → ( 𝑘 ∈ ℤ → ( ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) → ( 𝑋 mod 𝑇 ) = π ) ) ) |
| 125 |
124
|
rexlimdv |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ 2 ∥ ( 𝑋 / π ) ) → ( ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( 𝑋 / π ) → ( 𝑋 mod 𝑇 ) = π ) ) |
| 126 |
72 125
|
mpd |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ 2 ∥ ( 𝑋 / π ) ) → ( 𝑋 mod 𝑇 ) = π ) |
| 127 |
126
|
olcd |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ 2 ∥ ( 𝑋 / π ) ) → ( ( 𝑋 mod 𝑇 ) = 0 ∨ ( 𝑋 mod 𝑇 ) = π ) ) |
| 128 |
69 127
|
pm2.61dan |
⊢ ( ( 𝑋 mod π ) = 0 → ( ( 𝑋 mod 𝑇 ) = 0 ∨ ( 𝑋 mod 𝑇 ) = π ) ) |
| 129 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 130 |
36
|
rexri |
⊢ π ∈ ℝ* |
| 131 |
|
iocgtlb |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ) → 0 < ( 𝑋 mod 𝑇 ) ) |
| 132 |
129 130 131
|
mp3an12 |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → 0 < ( 𝑋 mod 𝑇 ) ) |
| 133 |
132
|
gt0ne0d |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → ( 𝑋 mod 𝑇 ) ≠ 0 ) |
| 134 |
133
|
neneqd |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → ¬ ( 𝑋 mod 𝑇 ) = 0 ) |
| 135 |
|
pm2.53 |
⊢ ( ( ( 𝑋 mod 𝑇 ) = 0 ∨ ( 𝑋 mod 𝑇 ) = π ) → ( ¬ ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod 𝑇 ) = π ) ) |
| 136 |
135
|
imp |
⊢ ( ( ( ( 𝑋 mod 𝑇 ) = 0 ∨ ( 𝑋 mod 𝑇 ) = π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) = π ) |
| 137 |
128 134 136
|
syl2anr |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod π ) = 0 ) → ( 𝑋 mod 𝑇 ) = π ) |
| 138 |
129
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) = π → 0 ∈ ℝ* ) |
| 139 |
130
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) = π → π ∈ ℝ* ) |
| 140 |
|
modcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) → ( 𝑋 mod 𝑇 ) ∈ ℝ ) |
| 141 |
3 65 140
|
mp2an |
⊢ ( 𝑋 mod 𝑇 ) ∈ ℝ |
| 142 |
141
|
rexri |
⊢ ( 𝑋 mod 𝑇 ) ∈ ℝ* |
| 143 |
142
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) = π → ( 𝑋 mod 𝑇 ) ∈ ℝ* ) |
| 144 |
|
id |
⊢ ( ( 𝑋 mod 𝑇 ) = π → ( 𝑋 mod 𝑇 ) = π ) |
| 145 |
37 144
|
breqtrrid |
⊢ ( ( 𝑋 mod 𝑇 ) = π → 0 < ( 𝑋 mod 𝑇 ) ) |
| 146 |
36
|
eqlei2 |
⊢ ( ( 𝑋 mod 𝑇 ) = π → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 147 |
138 139 143 145 146
|
eliocd |
⊢ ( ( 𝑋 mod 𝑇 ) = π → ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ) |
| 148 |
147
|
iftrued |
⊢ ( ( 𝑋 mod 𝑇 ) = π → if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) = 1 ) |
| 149 |
148
|
adantl |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ( 𝑋 mod 𝑇 ) = π ) → if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) = 1 ) |
| 150 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 mod 𝑇 ) = ( 𝑋 mod 𝑇 ) ) |
| 151 |
150
|
breq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 mod 𝑇 ) < π ↔ ( 𝑋 mod 𝑇 ) < π ) ) |
| 152 |
151
|
ifbid |
⊢ ( 𝑥 = 𝑋 → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) = if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 153 |
|
1ex |
⊢ 1 ∈ V |
| 154 |
|
negex |
⊢ - 1 ∈ V |
| 155 |
153 154
|
ifex |
⊢ if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) ∈ V |
| 156 |
152 2 155
|
fvmpt |
⊢ ( 𝑋 ∈ ℝ → ( 𝐹 ‘ 𝑋 ) = if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 157 |
3 156
|
ax-mp |
⊢ ( 𝐹 ‘ 𝑋 ) = if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) |
| 158 |
141
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) < π → ( 𝑋 mod 𝑇 ) ∈ ℝ ) |
| 159 |
|
id |
⊢ ( ( 𝑋 mod 𝑇 ) < π → ( 𝑋 mod 𝑇 ) < π ) |
| 160 |
158 159
|
ltned |
⊢ ( ( 𝑋 mod 𝑇 ) < π → ( 𝑋 mod 𝑇 ) ≠ π ) |
| 161 |
160
|
necon2bi |
⊢ ( ( 𝑋 mod 𝑇 ) = π → ¬ ( 𝑋 mod 𝑇 ) < π ) |
| 162 |
161
|
iffalsed |
⊢ ( ( 𝑋 mod 𝑇 ) = π → if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) = - 1 ) |
| 163 |
157 162
|
eqtrid |
⊢ ( ( 𝑋 mod 𝑇 ) = π → ( 𝐹 ‘ 𝑋 ) = - 1 ) |
| 164 |
163
|
adantl |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ( 𝑋 mod 𝑇 ) = π ) → ( 𝐹 ‘ 𝑋 ) = - 1 ) |
| 165 |
149 164
|
oveq12d |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ( 𝑋 mod 𝑇 ) = π ) → ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) = ( 1 + - 1 ) ) |
| 166 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
| 167 |
165 166
|
eqtrdi |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ( 𝑋 mod 𝑇 ) = π ) → ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) = 0 ) |
| 168 |
167
|
oveq1d |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ( 𝑋 mod 𝑇 ) = π ) → ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( 0 / 2 ) ) |
| 169 |
168
|
adantll |
⊢ ( ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod π ) = 0 ) ∧ ( 𝑋 mod 𝑇 ) = π ) → ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( 0 / 2 ) ) |
| 170 |
|
2cn |
⊢ 2 ∈ ℂ |
| 171 |
170 46
|
div0i |
⊢ ( 0 / 2 ) = 0 |
| 172 |
171
|
a1i |
⊢ ( ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod π ) = 0 ) ∧ ( 𝑋 mod 𝑇 ) = π ) → ( 0 / 2 ) = 0 ) |
| 173 |
|
iftrue |
⊢ ( ( 𝑋 mod π ) = 0 → if ( ( 𝑋 mod π ) = 0 , 0 , ( 𝐹 ‘ 𝑋 ) ) = 0 ) |
| 174 |
4 173
|
eqtr2id |
⊢ ( ( 𝑋 mod π ) = 0 → 0 = 𝑌 ) |
| 175 |
174
|
ad2antlr |
⊢ ( ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod π ) = 0 ) ∧ ( 𝑋 mod 𝑇 ) = π ) → 0 = 𝑌 ) |
| 176 |
169 172 175
|
3eqtrrd |
⊢ ( ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod π ) = 0 ) ∧ ( 𝑋 mod 𝑇 ) = π ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 177 |
137 176
|
mpdan |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod π ) = 0 ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 178 |
|
iftrue |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) = 1 ) |
| 179 |
178
|
adantr |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) = 1 ) |
| 180 |
141
|
a1i |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( 𝑋 mod 𝑇 ) ∈ ℝ ) |
| 181 |
36
|
a1i |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → π ∈ ℝ ) |
| 182 |
|
iocleub |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ) → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 183 |
129 130 182
|
mp3an12 |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 184 |
183
|
adantr |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 185 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 186 |
185 17
|
mulcomi |
⊢ ( 1 · π ) = ( π · 1 ) |
| 187 |
85 186
|
eqtr3i |
⊢ π = ( π · 1 ) |
| 188 |
187
|
oveq1i |
⊢ ( π + ( π · ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) = ( ( π · 1 ) + ( π · ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 189 |
170 17
|
mulcomi |
⊢ ( 2 · π ) = ( π · 2 ) |
| 190 |
1 189
|
eqtri |
⊢ 𝑇 = ( π · 2 ) |
| 191 |
190
|
oveq1i |
⊢ ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) = ( ( π · 2 ) · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) |
| 192 |
113 64
|
gtneii |
⊢ 𝑇 ≠ 0 |
| 193 |
3 61 192
|
redivcli |
⊢ ( 𝑋 / 𝑇 ) ∈ ℝ |
| 194 |
|
flcl |
⊢ ( ( 𝑋 / 𝑇 ) ∈ ℝ → ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ∈ ℤ ) |
| 195 |
193 194
|
ax-mp |
⊢ ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ∈ ℤ |
| 196 |
|
zcn |
⊢ ( ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ∈ ℤ → ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ∈ ℂ ) |
| 197 |
195 196
|
ax-mp |
⊢ ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ∈ ℂ |
| 198 |
17 170 197
|
mulassi |
⊢ ( ( π · 2 ) · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) = ( π · ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) |
| 199 |
191 198
|
eqtri |
⊢ ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) = ( π · ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) |
| 200 |
199
|
oveq2i |
⊢ ( π + ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) = ( π + ( π · ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 201 |
170 197
|
mulcli |
⊢ ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ∈ ℂ |
| 202 |
17 185 201
|
adddii |
⊢ ( π · ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) = ( ( π · 1 ) + ( π · ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 203 |
188 200 202
|
3eqtr4ri |
⊢ ( π · ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) = ( π + ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) |
| 204 |
203
|
a1i |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( π · ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) = ( π + ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 205 |
|
id |
⊢ ( π = ( 𝑋 mod 𝑇 ) → π = ( 𝑋 mod 𝑇 ) ) |
| 206 |
|
modval |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) → ( 𝑋 mod 𝑇 ) = ( 𝑋 − ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 207 |
3 65 206
|
mp2an |
⊢ ( 𝑋 mod 𝑇 ) = ( 𝑋 − ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) |
| 208 |
205 207
|
eqtrdi |
⊢ ( π = ( 𝑋 mod 𝑇 ) → π = ( 𝑋 − ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 209 |
208
|
oveq1d |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( π + ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) = ( ( 𝑋 − ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) + ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 210 |
30
|
a1i |
⊢ ( π = ( 𝑋 mod 𝑇 ) → 𝑋 ∈ ℂ ) |
| 211 |
61
|
recni |
⊢ 𝑇 ∈ ℂ |
| 212 |
211 197
|
mulcli |
⊢ ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ∈ ℂ |
| 213 |
212
|
a1i |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ∈ ℂ ) |
| 214 |
210 213
|
npcand |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( ( 𝑋 − ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) + ( 𝑇 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) = 𝑋 ) |
| 215 |
204 209 214
|
3eqtrrd |
⊢ ( π = ( 𝑋 mod 𝑇 ) → 𝑋 = ( π · ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) ) |
| 216 |
215
|
oveq1d |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( 𝑋 / π ) = ( ( π · ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) / π ) ) |
| 217 |
185 201
|
addcli |
⊢ ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ∈ ℂ |
| 218 |
217 17 38
|
divcan3i |
⊢ ( ( π · ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) / π ) = ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) |
| 219 |
216 218
|
eqtrdi |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( 𝑋 / π ) = ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ) |
| 220 |
|
1z |
⊢ 1 ∈ ℤ |
| 221 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ∈ ℤ ) → ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ∈ ℤ ) |
| 222 |
6 195 221
|
mp2an |
⊢ ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ∈ ℤ |
| 223 |
|
zaddcl |
⊢ ( ( 1 ∈ ℤ ∧ ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ∈ ℤ ) → ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ∈ ℤ ) |
| 224 |
220 222 223
|
mp2an |
⊢ ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ∈ ℤ |
| 225 |
224
|
a1i |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( 1 + ( 2 · ( ⌊ ‘ ( 𝑋 / 𝑇 ) ) ) ) ∈ ℤ ) |
| 226 |
219 225
|
eqeltrd |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( 𝑋 / π ) ∈ ℤ ) |
| 227 |
226 10
|
sylibr |
⊢ ( π = ( 𝑋 mod 𝑇 ) → ( 𝑋 mod π ) = 0 ) |
| 228 |
227
|
necon3bi |
⊢ ( ¬ ( 𝑋 mod π ) = 0 → π ≠ ( 𝑋 mod 𝑇 ) ) |
| 229 |
228
|
adantl |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → π ≠ ( 𝑋 mod 𝑇 ) ) |
| 230 |
180 181 184 229
|
leneltd |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( 𝑋 mod 𝑇 ) < π ) |
| 231 |
|
iftrue |
⊢ ( ( 𝑋 mod 𝑇 ) < π → if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) = 1 ) |
| 232 |
157 231
|
eqtrid |
⊢ ( ( 𝑋 mod 𝑇 ) < π → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 233 |
230 232
|
syl |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 234 |
179 233
|
oveq12d |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) = ( 1 + 1 ) ) |
| 235 |
234
|
oveq1d |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( ( 1 + 1 ) / 2 ) ) |
| 236 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 237 |
236
|
oveq1i |
⊢ ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
| 238 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 239 |
237 238
|
eqtr2i |
⊢ 1 = ( ( 1 + 1 ) / 2 ) |
| 240 |
233 239
|
eqtr2di |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( ( 1 + 1 ) / 2 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 241 |
|
iffalse |
⊢ ( ¬ ( 𝑋 mod π ) = 0 → if ( ( 𝑋 mod π ) = 0 , 0 , ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 242 |
4 241
|
eqtr2id |
⊢ ( ¬ ( 𝑋 mod π ) = 0 → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 243 |
242
|
adantl |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 244 |
235 240 243
|
3eqtrrd |
⊢ ( ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod π ) = 0 ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 245 |
177 244
|
pm2.61dan |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 246 |
133
|
necon2bi |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ) |
| 247 |
246
|
iffalsed |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) = - 1 ) |
| 248 |
|
id |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod 𝑇 ) = 0 ) |
| 249 |
248 37
|
eqbrtrdi |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod 𝑇 ) < π ) |
| 250 |
249
|
iftrued |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) = 1 ) |
| 251 |
157 250
|
eqtrid |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( 𝐹 ‘ 𝑋 ) = 1 ) |
| 252 |
247 251
|
oveq12d |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) = ( - 1 + 1 ) ) |
| 253 |
252
|
oveq1d |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( ( - 1 + 1 ) / 2 ) ) |
| 254 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 255 |
185 254 166
|
addcomli |
⊢ ( - 1 + 1 ) = 0 |
| 256 |
255
|
oveq1i |
⊢ ( ( - 1 + 1 ) / 2 ) = ( 0 / 2 ) |
| 257 |
256 171
|
eqtri |
⊢ ( ( - 1 + 1 ) / 2 ) = 0 |
| 258 |
257
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( ( - 1 + 1 ) / 2 ) = 0 ) |
| 259 |
1
|
oveq2i |
⊢ ( 𝑋 / 𝑇 ) = ( 𝑋 / ( 2 · π ) ) |
| 260 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 261 |
17 38
|
pm3.2i |
⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
| 262 |
|
divdiv1 |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( 𝑋 / 2 ) / π ) = ( 𝑋 / ( 2 · π ) ) ) |
| 263 |
30 260 261 262
|
mp3an |
⊢ ( ( 𝑋 / 2 ) / π ) = ( 𝑋 / ( 2 · π ) ) |
| 264 |
30 170 17 46 38
|
divdiv32i |
⊢ ( ( 𝑋 / 2 ) / π ) = ( ( 𝑋 / π ) / 2 ) |
| 265 |
259 263 264
|
3eqtr2i |
⊢ ( 𝑋 / 𝑇 ) = ( ( 𝑋 / π ) / 2 ) |
| 266 |
265
|
oveq2i |
⊢ ( 2 · ( 𝑋 / 𝑇 ) ) = ( 2 · ( ( 𝑋 / π ) / 2 ) ) |
| 267 |
30 17 38
|
divcli |
⊢ ( 𝑋 / π ) ∈ ℂ |
| 268 |
267 170 46
|
divcan2i |
⊢ ( 2 · ( ( 𝑋 / π ) / 2 ) ) = ( 𝑋 / π ) |
| 269 |
266 268
|
eqtr2i |
⊢ ( 𝑋 / π ) = ( 2 · ( 𝑋 / 𝑇 ) ) |
| 270 |
6
|
a1i |
⊢ ( ( 𝑋 / 𝑇 ) ∈ ℤ → 2 ∈ ℤ ) |
| 271 |
|
id |
⊢ ( ( 𝑋 / 𝑇 ) ∈ ℤ → ( 𝑋 / 𝑇 ) ∈ ℤ ) |
| 272 |
270 271
|
zmulcld |
⊢ ( ( 𝑋 / 𝑇 ) ∈ ℤ → ( 2 · ( 𝑋 / 𝑇 ) ) ∈ ℤ ) |
| 273 |
269 272
|
eqeltrid |
⊢ ( ( 𝑋 / 𝑇 ) ∈ ℤ → ( 𝑋 / π ) ∈ ℤ ) |
| 274 |
67 273
|
sylbi |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 / π ) ∈ ℤ ) |
| 275 |
274 10
|
sylibr |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod π ) = 0 ) |
| 276 |
275
|
iftrued |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → if ( ( 𝑋 mod π ) = 0 , 0 , ( 𝐹 ‘ 𝑋 ) ) = 0 ) |
| 277 |
4 276
|
eqtr2id |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → 0 = 𝑌 ) |
| 278 |
253 258 277
|
3eqtrrd |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 279 |
278
|
adantl |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ( 𝑋 mod 𝑇 ) = 0 ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 280 |
130
|
a1i |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → π ∈ ℝ* ) |
| 281 |
61
|
rexri |
⊢ 𝑇 ∈ ℝ* |
| 282 |
281
|
a1i |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → 𝑇 ∈ ℝ* ) |
| 283 |
141
|
a1i |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ∈ ℝ ) |
| 284 |
|
pm4.56 |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) ↔ ¬ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∨ ( 𝑋 mod 𝑇 ) = 0 ) ) |
| 285 |
284
|
biimpi |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ¬ ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∨ ( 𝑋 mod 𝑇 ) = 0 ) ) |
| 286 |
|
olc |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∨ ( 𝑋 mod 𝑇 ) = 0 ) ) |
| 287 |
286
|
adantl |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ( 𝑋 mod 𝑇 ) = 0 ) → ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∨ ( 𝑋 mod 𝑇 ) = 0 ) ) |
| 288 |
129
|
a1i |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → 0 ∈ ℝ* ) |
| 289 |
130
|
a1i |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → π ∈ ℝ* ) |
| 290 |
142
|
a1i |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ∈ ℝ* ) |
| 291 |
|
0red |
⊢ ( ¬ ( 𝑋 mod 𝑇 ) = 0 → 0 ∈ ℝ ) |
| 292 |
141
|
a1i |
⊢ ( ¬ ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod 𝑇 ) ∈ ℝ ) |
| 293 |
|
modge0 |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) → 0 ≤ ( 𝑋 mod 𝑇 ) ) |
| 294 |
3 65 293
|
mp2an |
⊢ 0 ≤ ( 𝑋 mod 𝑇 ) |
| 295 |
294
|
a1i |
⊢ ( ¬ ( 𝑋 mod 𝑇 ) = 0 → 0 ≤ ( 𝑋 mod 𝑇 ) ) |
| 296 |
|
neqne |
⊢ ( ¬ ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod 𝑇 ) ≠ 0 ) |
| 297 |
291 292 295 296
|
leneltd |
⊢ ( ¬ ( 𝑋 mod 𝑇 ) = 0 → 0 < ( 𝑋 mod 𝑇 ) ) |
| 298 |
297
|
adantl |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → 0 < ( 𝑋 mod 𝑇 ) ) |
| 299 |
|
simpl |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 300 |
288 289 290 298 299
|
eliocd |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ) |
| 301 |
300
|
orcd |
⊢ ( ( ( 𝑋 mod 𝑇 ) ≤ π ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∨ ( 𝑋 mod 𝑇 ) = 0 ) ) |
| 302 |
287 301
|
pm2.61dan |
⊢ ( ( 𝑋 mod 𝑇 ) ≤ π → ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∨ ( 𝑋 mod 𝑇 ) = 0 ) ) |
| 303 |
285 302
|
nsyl |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ¬ ( 𝑋 mod 𝑇 ) ≤ π ) |
| 304 |
36
|
a1i |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → π ∈ ℝ ) |
| 305 |
304 283
|
ltnled |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( π < ( 𝑋 mod 𝑇 ) ↔ ¬ ( 𝑋 mod 𝑇 ) ≤ π ) ) |
| 306 |
303 305
|
mpbird |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → π < ( 𝑋 mod 𝑇 ) ) |
| 307 |
|
modlt |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) → ( 𝑋 mod 𝑇 ) < 𝑇 ) |
| 308 |
3 65 307
|
mp2an |
⊢ ( 𝑋 mod 𝑇 ) < 𝑇 |
| 309 |
308
|
a1i |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) < 𝑇 ) |
| 310 |
280 282 283 306 309
|
eliood |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) ) |
| 311 |
129
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → 0 ∈ ℝ* ) |
| 312 |
36
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → π ∈ ℝ ) |
| 313 |
142
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( 𝑋 mod 𝑇 ) ∈ ℝ* ) |
| 314 |
|
ioogtlb |
⊢ ( ( π ∈ ℝ* ∧ 𝑇 ∈ ℝ* ∧ ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) ) → π < ( 𝑋 mod 𝑇 ) ) |
| 315 |
130 281 314
|
mp3an12 |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → π < ( 𝑋 mod 𝑇 ) ) |
| 316 |
311 312 313 315
|
gtnelioc |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ) |
| 317 |
316
|
iffalsed |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) = - 1 ) |
| 318 |
141
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( 𝑋 mod 𝑇 ) ∈ ℝ ) |
| 319 |
312 318 315
|
ltnsymd |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ¬ ( 𝑋 mod 𝑇 ) < π ) |
| 320 |
319
|
iffalsed |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → if ( ( 𝑋 mod 𝑇 ) < π , 1 , - 1 ) = - 1 ) |
| 321 |
157 320
|
eqtrid |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( 𝐹 ‘ 𝑋 ) = - 1 ) |
| 322 |
317 321
|
oveq12d |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) = ( - 1 + - 1 ) ) |
| 323 |
322
|
oveq1d |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) = ( ( - 1 + - 1 ) / 2 ) ) |
| 324 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 325 |
324
|
negeqi |
⊢ - 2 = - ( 1 + 1 ) |
| 326 |
185 185
|
negdii |
⊢ - ( 1 + 1 ) = ( - 1 + - 1 ) |
| 327 |
325 326
|
eqtr2i |
⊢ ( - 1 + - 1 ) = - 2 |
| 328 |
327
|
oveq1i |
⊢ ( ( - 1 + - 1 ) / 2 ) = ( - 2 / 2 ) |
| 329 |
|
divneg |
⊢ ( ( 2 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( 2 / 2 ) = ( - 2 / 2 ) ) |
| 330 |
170 170 46 329
|
mp3an |
⊢ - ( 2 / 2 ) = ( - 2 / 2 ) |
| 331 |
238
|
negeqi |
⊢ - ( 2 / 2 ) = - 1 |
| 332 |
328 330 331
|
3eqtr2i |
⊢ ( ( - 1 + - 1 ) / 2 ) = - 1 |
| 333 |
332
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( ( - 1 + - 1 ) / 2 ) = - 1 ) |
| 334 |
4
|
a1i |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → 𝑌 = if ( ( 𝑋 mod π ) = 0 , 0 , ( 𝐹 ‘ 𝑋 ) ) ) |
| 335 |
312 318
|
ltnled |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ( π < ( 𝑋 mod 𝑇 ) ↔ ¬ ( 𝑋 mod 𝑇 ) ≤ π ) ) |
| 336 |
315 335
|
mpbid |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ¬ ( 𝑋 mod 𝑇 ) ≤ π ) |
| 337 |
248 114
|
eqbrtrdi |
⊢ ( ( 𝑋 mod 𝑇 ) = 0 → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 338 |
337
|
adantl |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 339 |
128
|
orcanai |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) = π ) |
| 340 |
339 146
|
syl |
⊢ ( ( ( 𝑋 mod π ) = 0 ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 341 |
338 340
|
pm2.61dan |
⊢ ( ( 𝑋 mod π ) = 0 → ( 𝑋 mod 𝑇 ) ≤ π ) |
| 342 |
336 341
|
nsyl |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → ¬ ( 𝑋 mod π ) = 0 ) |
| 343 |
342
|
iffalsed |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → if ( ( 𝑋 mod π ) = 0 , 0 , ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 344 |
334 343 321
|
3eqtrrd |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → - 1 = 𝑌 ) |
| 345 |
323 333 344
|
3eqtrrd |
⊢ ( ( 𝑋 mod 𝑇 ) ∈ ( π (,) 𝑇 ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 346 |
310 345
|
syl |
⊢ ( ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) ∧ ¬ ( 𝑋 mod 𝑇 ) = 0 ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 347 |
279 346
|
pm2.61dan |
⊢ ( ¬ ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) → 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) ) |
| 348 |
245 347
|
pm2.61i |
⊢ 𝑌 = ( ( if ( ( 𝑋 mod 𝑇 ) ∈ ( 0 (,] π ) , 1 , - 1 ) + ( 𝐹 ‘ 𝑋 ) ) / 2 ) |