| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierswlem.t |
|- T = ( 2 x. _pi ) |
| 2 |
|
fourierswlem.f |
|- F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 3 |
|
fourierswlem.x |
|- X e. RR |
| 4 |
|
fourierswlem.y |
|- Y = if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) |
| 5 |
|
simpr |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> 2 || ( X / _pi ) ) |
| 6 |
|
2z |
|- 2 e. ZZ |
| 7 |
6
|
a1i |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> 2 e. ZZ ) |
| 8 |
|
pirp |
|- _pi e. RR+ |
| 9 |
|
mod0 |
|- ( ( X e. RR /\ _pi e. RR+ ) -> ( ( X mod _pi ) = 0 <-> ( X / _pi ) e. ZZ ) ) |
| 10 |
3 8 9
|
mp2an |
|- ( ( X mod _pi ) = 0 <-> ( X / _pi ) e. ZZ ) |
| 11 |
10
|
biimpi |
|- ( ( X mod _pi ) = 0 -> ( X / _pi ) e. ZZ ) |
| 12 |
11
|
adantr |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( X / _pi ) e. ZZ ) |
| 13 |
|
divides |
|- ( ( 2 e. ZZ /\ ( X / _pi ) e. ZZ ) -> ( 2 || ( X / _pi ) <-> E. k e. ZZ ( k x. 2 ) = ( X / _pi ) ) ) |
| 14 |
7 12 13
|
syl2anc |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( 2 || ( X / _pi ) <-> E. k e. ZZ ( k x. 2 ) = ( X / _pi ) ) ) |
| 15 |
5 14
|
mpbid |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> E. k e. ZZ ( k x. 2 ) = ( X / _pi ) ) |
| 16 |
|
2cnd |
|- ( k e. ZZ -> 2 e. CC ) |
| 17 |
|
picn |
|- _pi e. CC |
| 18 |
17
|
a1i |
|- ( k e. ZZ -> _pi e. CC ) |
| 19 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
| 20 |
16 18 19
|
mulassd |
|- ( k e. ZZ -> ( ( 2 x. _pi ) x. k ) = ( 2 x. ( _pi x. k ) ) ) |
| 21 |
18 19
|
mulcld |
|- ( k e. ZZ -> ( _pi x. k ) e. CC ) |
| 22 |
16 21
|
mulcomd |
|- ( k e. ZZ -> ( 2 x. ( _pi x. k ) ) = ( ( _pi x. k ) x. 2 ) ) |
| 23 |
20 22
|
eqtrd |
|- ( k e. ZZ -> ( ( 2 x. _pi ) x. k ) = ( ( _pi x. k ) x. 2 ) ) |
| 24 |
23
|
adantr |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( ( 2 x. _pi ) x. k ) = ( ( _pi x. k ) x. 2 ) ) |
| 25 |
18 19 16
|
mulassd |
|- ( k e. ZZ -> ( ( _pi x. k ) x. 2 ) = ( _pi x. ( k x. 2 ) ) ) |
| 26 |
25
|
adantr |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( ( _pi x. k ) x. 2 ) = ( _pi x. ( k x. 2 ) ) ) |
| 27 |
|
id |
|- ( ( k x. 2 ) = ( X / _pi ) -> ( k x. 2 ) = ( X / _pi ) ) |
| 28 |
27
|
eqcomd |
|- ( ( k x. 2 ) = ( X / _pi ) -> ( X / _pi ) = ( k x. 2 ) ) |
| 29 |
28
|
adantl |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( X / _pi ) = ( k x. 2 ) ) |
| 30 |
3
|
recni |
|- X e. CC |
| 31 |
30
|
a1i |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> X e. CC ) |
| 32 |
17
|
a1i |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> _pi e. CC ) |
| 33 |
19
|
adantr |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> k e. CC ) |
| 34 |
|
2cnd |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> 2 e. CC ) |
| 35 |
33 34
|
mulcld |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( k x. 2 ) e. CC ) |
| 36 |
|
pire |
|- _pi e. RR |
| 37 |
|
pipos |
|- 0 < _pi |
| 38 |
36 37
|
gt0ne0ii |
|- _pi =/= 0 |
| 39 |
38
|
a1i |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> _pi =/= 0 ) |
| 40 |
31 32 35 39
|
divmuld |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( ( X / _pi ) = ( k x. 2 ) <-> ( _pi x. ( k x. 2 ) ) = X ) ) |
| 41 |
29 40
|
mpbid |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( _pi x. ( k x. 2 ) ) = X ) |
| 42 |
24 26 41
|
3eqtrrd |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> X = ( ( 2 x. _pi ) x. k ) ) |
| 43 |
1
|
a1i |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> T = ( 2 x. _pi ) ) |
| 44 |
42 43
|
oveq12d |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( X / T ) = ( ( ( 2 x. _pi ) x. k ) / ( 2 x. _pi ) ) ) |
| 45 |
16 18
|
mulcld |
|- ( k e. ZZ -> ( 2 x. _pi ) e. CC ) |
| 46 |
|
2ne0 |
|- 2 =/= 0 |
| 47 |
46
|
a1i |
|- ( k e. ZZ -> 2 =/= 0 ) |
| 48 |
38
|
a1i |
|- ( k e. ZZ -> _pi =/= 0 ) |
| 49 |
16 18 47 48
|
mulne0d |
|- ( k e. ZZ -> ( 2 x. _pi ) =/= 0 ) |
| 50 |
19 45 49
|
divcan3d |
|- ( k e. ZZ -> ( ( ( 2 x. _pi ) x. k ) / ( 2 x. _pi ) ) = k ) |
| 51 |
50
|
adantr |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( ( ( 2 x. _pi ) x. k ) / ( 2 x. _pi ) ) = k ) |
| 52 |
44 51
|
eqtrd |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( X / T ) = k ) |
| 53 |
|
simpl |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> k e. ZZ ) |
| 54 |
52 53
|
eqeltrd |
|- ( ( k e. ZZ /\ ( k x. 2 ) = ( X / _pi ) ) -> ( X / T ) e. ZZ ) |
| 55 |
54
|
ex |
|- ( k e. ZZ -> ( ( k x. 2 ) = ( X / _pi ) -> ( X / T ) e. ZZ ) ) |
| 56 |
55
|
a1i |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( k e. ZZ -> ( ( k x. 2 ) = ( X / _pi ) -> ( X / T ) e. ZZ ) ) ) |
| 57 |
56
|
rexlimdv |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( E. k e. ZZ ( k x. 2 ) = ( X / _pi ) -> ( X / T ) e. ZZ ) ) |
| 58 |
15 57
|
mpd |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( X / T ) e. ZZ ) |
| 59 |
|
2re |
|- 2 e. RR |
| 60 |
59 36
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 61 |
1 60
|
eqeltri |
|- T e. RR |
| 62 |
|
2pos |
|- 0 < 2 |
| 63 |
59 36 62 37
|
mulgt0ii |
|- 0 < ( 2 x. _pi ) |
| 64 |
63 1
|
breqtrri |
|- 0 < T |
| 65 |
61 64
|
elrpii |
|- T e. RR+ |
| 66 |
|
mod0 |
|- ( ( X e. RR /\ T e. RR+ ) -> ( ( X mod T ) = 0 <-> ( X / T ) e. ZZ ) ) |
| 67 |
3 65 66
|
mp2an |
|- ( ( X mod T ) = 0 <-> ( X / T ) e. ZZ ) |
| 68 |
58 67
|
sylibr |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( X mod T ) = 0 ) |
| 69 |
68
|
orcd |
|- ( ( ( X mod _pi ) = 0 /\ 2 || ( X / _pi ) ) -> ( ( X mod T ) = 0 \/ ( X mod T ) = _pi ) ) |
| 70 |
|
odd2np1 |
|- ( ( X / _pi ) e. ZZ -> ( -. 2 || ( X / _pi ) <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) ) |
| 71 |
10 70
|
sylbi |
|- ( ( X mod _pi ) = 0 -> ( -. 2 || ( X / _pi ) <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) ) |
| 72 |
71
|
biimpa |
|- ( ( ( X mod _pi ) = 0 /\ -. 2 || ( X / _pi ) ) -> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) |
| 73 |
16 19
|
mulcld |
|- ( k e. ZZ -> ( 2 x. k ) e. CC ) |
| 74 |
73
|
adantr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( 2 x. k ) e. CC ) |
| 75 |
|
1cnd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> 1 e. CC ) |
| 76 |
17
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> _pi e. CC ) |
| 77 |
74 75 76
|
adddird |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( ( 2 x. k ) + 1 ) x. _pi ) = ( ( ( 2 x. k ) x. _pi ) + ( 1 x. _pi ) ) ) |
| 78 |
16 19
|
mulcomd |
|- ( k e. ZZ -> ( 2 x. k ) = ( k x. 2 ) ) |
| 79 |
78
|
oveq1d |
|- ( k e. ZZ -> ( ( 2 x. k ) x. _pi ) = ( ( k x. 2 ) x. _pi ) ) |
| 80 |
19 16 18
|
mulassd |
|- ( k e. ZZ -> ( ( k x. 2 ) x. _pi ) = ( k x. ( 2 x. _pi ) ) ) |
| 81 |
1
|
eqcomi |
|- ( 2 x. _pi ) = T |
| 82 |
81
|
a1i |
|- ( k e. ZZ -> ( 2 x. _pi ) = T ) |
| 83 |
82
|
oveq2d |
|- ( k e. ZZ -> ( k x. ( 2 x. _pi ) ) = ( k x. T ) ) |
| 84 |
79 80 83
|
3eqtrd |
|- ( k e. ZZ -> ( ( 2 x. k ) x. _pi ) = ( k x. T ) ) |
| 85 |
17
|
mullidi |
|- ( 1 x. _pi ) = _pi |
| 86 |
85
|
a1i |
|- ( k e. ZZ -> ( 1 x. _pi ) = _pi ) |
| 87 |
84 86
|
oveq12d |
|- ( k e. ZZ -> ( ( ( 2 x. k ) x. _pi ) + ( 1 x. _pi ) ) = ( ( k x. T ) + _pi ) ) |
| 88 |
87
|
adantr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( ( 2 x. k ) x. _pi ) + ( 1 x. _pi ) ) = ( ( k x. T ) + _pi ) ) |
| 89 |
1 45
|
eqeltrid |
|- ( k e. ZZ -> T e. CC ) |
| 90 |
19 89
|
mulcld |
|- ( k e. ZZ -> ( k x. T ) e. CC ) |
| 91 |
90 18
|
addcomd |
|- ( k e. ZZ -> ( ( k x. T ) + _pi ) = ( _pi + ( k x. T ) ) ) |
| 92 |
91
|
adantr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( k x. T ) + _pi ) = ( _pi + ( k x. T ) ) ) |
| 93 |
77 88 92
|
3eqtrrd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( _pi + ( k x. T ) ) = ( ( ( 2 x. k ) + 1 ) x. _pi ) ) |
| 94 |
|
peano2cn |
|- ( ( 2 x. k ) e. CC -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 95 |
73 94
|
syl |
|- ( k e. ZZ -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 96 |
95 18
|
mulcomd |
|- ( k e. ZZ -> ( ( ( 2 x. k ) + 1 ) x. _pi ) = ( _pi x. ( ( 2 x. k ) + 1 ) ) ) |
| 97 |
96
|
adantr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( ( 2 x. k ) + 1 ) x. _pi ) = ( _pi x. ( ( 2 x. k ) + 1 ) ) ) |
| 98 |
|
id |
|- ( ( ( 2 x. k ) + 1 ) = ( X / _pi ) -> ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) |
| 99 |
98
|
eqcomd |
|- ( ( ( 2 x. k ) + 1 ) = ( X / _pi ) -> ( X / _pi ) = ( ( 2 x. k ) + 1 ) ) |
| 100 |
99
|
adantl |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( X / _pi ) = ( ( 2 x. k ) + 1 ) ) |
| 101 |
30
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> X e. CC ) |
| 102 |
95
|
adantr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( 2 x. k ) + 1 ) e. CC ) |
| 103 |
38
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> _pi =/= 0 ) |
| 104 |
101 76 102 103
|
divmuld |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( X / _pi ) = ( ( 2 x. k ) + 1 ) <-> ( _pi x. ( ( 2 x. k ) + 1 ) ) = X ) ) |
| 105 |
100 104
|
mpbid |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( _pi x. ( ( 2 x. k ) + 1 ) ) = X ) |
| 106 |
93 97 105
|
3eqtrrd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> X = ( _pi + ( k x. T ) ) ) |
| 107 |
106
|
oveq1d |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( X mod T ) = ( ( _pi + ( k x. T ) ) mod T ) ) |
| 108 |
|
modcyc |
|- ( ( _pi e. RR /\ T e. RR+ /\ k e. ZZ ) -> ( ( _pi + ( k x. T ) ) mod T ) = ( _pi mod T ) ) |
| 109 |
36 65 108
|
mp3an12 |
|- ( k e. ZZ -> ( ( _pi + ( k x. T ) ) mod T ) = ( _pi mod T ) ) |
| 110 |
109
|
adantr |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( ( _pi + ( k x. T ) ) mod T ) = ( _pi mod T ) ) |
| 111 |
36
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> _pi e. RR ) |
| 112 |
65
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> T e. RR+ ) |
| 113 |
|
0re |
|- 0 e. RR |
| 114 |
113 36 37
|
ltleii |
|- 0 <_ _pi |
| 115 |
114
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> 0 <_ _pi ) |
| 116 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
| 117 |
8 116
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
| 118 |
117 1
|
breqtrri |
|- _pi < T |
| 119 |
118
|
a1i |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> _pi < T ) |
| 120 |
|
modid |
|- ( ( ( _pi e. RR /\ T e. RR+ ) /\ ( 0 <_ _pi /\ _pi < T ) ) -> ( _pi mod T ) = _pi ) |
| 121 |
111 112 115 119 120
|
syl22anc |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( _pi mod T ) = _pi ) |
| 122 |
107 110 121
|
3eqtrd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( X / _pi ) ) -> ( X mod T ) = _pi ) |
| 123 |
122
|
ex |
|- ( k e. ZZ -> ( ( ( 2 x. k ) + 1 ) = ( X / _pi ) -> ( X mod T ) = _pi ) ) |
| 124 |
123
|
a1i |
|- ( ( ( X mod _pi ) = 0 /\ -. 2 || ( X / _pi ) ) -> ( k e. ZZ -> ( ( ( 2 x. k ) + 1 ) = ( X / _pi ) -> ( X mod T ) = _pi ) ) ) |
| 125 |
124
|
rexlimdv |
|- ( ( ( X mod _pi ) = 0 /\ -. 2 || ( X / _pi ) ) -> ( E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( X / _pi ) -> ( X mod T ) = _pi ) ) |
| 126 |
72 125
|
mpd |
|- ( ( ( X mod _pi ) = 0 /\ -. 2 || ( X / _pi ) ) -> ( X mod T ) = _pi ) |
| 127 |
126
|
olcd |
|- ( ( ( X mod _pi ) = 0 /\ -. 2 || ( X / _pi ) ) -> ( ( X mod T ) = 0 \/ ( X mod T ) = _pi ) ) |
| 128 |
69 127
|
pm2.61dan |
|- ( ( X mod _pi ) = 0 -> ( ( X mod T ) = 0 \/ ( X mod T ) = _pi ) ) |
| 129 |
|
0xr |
|- 0 e. RR* |
| 130 |
36
|
rexri |
|- _pi e. RR* |
| 131 |
|
iocgtlb |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 (,] _pi ) ) -> 0 < ( X mod T ) ) |
| 132 |
129 130 131
|
mp3an12 |
|- ( ( X mod T ) e. ( 0 (,] _pi ) -> 0 < ( X mod T ) ) |
| 133 |
132
|
gt0ne0d |
|- ( ( X mod T ) e. ( 0 (,] _pi ) -> ( X mod T ) =/= 0 ) |
| 134 |
133
|
neneqd |
|- ( ( X mod T ) e. ( 0 (,] _pi ) -> -. ( X mod T ) = 0 ) |
| 135 |
|
pm2.53 |
|- ( ( ( X mod T ) = 0 \/ ( X mod T ) = _pi ) -> ( -. ( X mod T ) = 0 -> ( X mod T ) = _pi ) ) |
| 136 |
135
|
imp |
|- ( ( ( ( X mod T ) = 0 \/ ( X mod T ) = _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) = _pi ) |
| 137 |
128 134 136
|
syl2anr |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod _pi ) = 0 ) -> ( X mod T ) = _pi ) |
| 138 |
129
|
a1i |
|- ( ( X mod T ) = _pi -> 0 e. RR* ) |
| 139 |
130
|
a1i |
|- ( ( X mod T ) = _pi -> _pi e. RR* ) |
| 140 |
|
modcl |
|- ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) e. RR ) |
| 141 |
3 65 140
|
mp2an |
|- ( X mod T ) e. RR |
| 142 |
141
|
rexri |
|- ( X mod T ) e. RR* |
| 143 |
142
|
a1i |
|- ( ( X mod T ) = _pi -> ( X mod T ) e. RR* ) |
| 144 |
|
id |
|- ( ( X mod T ) = _pi -> ( X mod T ) = _pi ) |
| 145 |
37 144
|
breqtrrid |
|- ( ( X mod T ) = _pi -> 0 < ( X mod T ) ) |
| 146 |
36
|
eqlei2 |
|- ( ( X mod T ) = _pi -> ( X mod T ) <_ _pi ) |
| 147 |
138 139 143 145 146
|
eliocd |
|- ( ( X mod T ) = _pi -> ( X mod T ) e. ( 0 (,] _pi ) ) |
| 148 |
147
|
iftrued |
|- ( ( X mod T ) = _pi -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 ) |
| 149 |
148
|
adantl |
|- ( ( ( X mod _pi ) = 0 /\ ( X mod T ) = _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 ) |
| 150 |
|
oveq1 |
|- ( x = X -> ( x mod T ) = ( X mod T ) ) |
| 151 |
150
|
breq1d |
|- ( x = X -> ( ( x mod T ) < _pi <-> ( X mod T ) < _pi ) ) |
| 152 |
151
|
ifbid |
|- ( x = X -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 153 |
|
1ex |
|- 1 e. _V |
| 154 |
|
negex |
|- -u 1 e. _V |
| 155 |
153 154
|
ifex |
|- if ( ( X mod T ) < _pi , 1 , -u 1 ) e. _V |
| 156 |
152 2 155
|
fvmpt |
|- ( X e. RR -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 157 |
3 156
|
ax-mp |
|- ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) |
| 158 |
141
|
a1i |
|- ( ( X mod T ) < _pi -> ( X mod T ) e. RR ) |
| 159 |
|
id |
|- ( ( X mod T ) < _pi -> ( X mod T ) < _pi ) |
| 160 |
158 159
|
ltned |
|- ( ( X mod T ) < _pi -> ( X mod T ) =/= _pi ) |
| 161 |
160
|
necon2bi |
|- ( ( X mod T ) = _pi -> -. ( X mod T ) < _pi ) |
| 162 |
161
|
iffalsed |
|- ( ( X mod T ) = _pi -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 163 |
157 162
|
eqtrid |
|- ( ( X mod T ) = _pi -> ( F ` X ) = -u 1 ) |
| 164 |
163
|
adantl |
|- ( ( ( X mod _pi ) = 0 /\ ( X mod T ) = _pi ) -> ( F ` X ) = -u 1 ) |
| 165 |
149 164
|
oveq12d |
|- ( ( ( X mod _pi ) = 0 /\ ( X mod T ) = _pi ) -> ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) = ( 1 + -u 1 ) ) |
| 166 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
| 167 |
165 166
|
eqtrdi |
|- ( ( ( X mod _pi ) = 0 /\ ( X mod T ) = _pi ) -> ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) = 0 ) |
| 168 |
167
|
oveq1d |
|- ( ( ( X mod _pi ) = 0 /\ ( X mod T ) = _pi ) -> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = ( 0 / 2 ) ) |
| 169 |
168
|
adantll |
|- ( ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod _pi ) = 0 ) /\ ( X mod T ) = _pi ) -> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = ( 0 / 2 ) ) |
| 170 |
|
2cn |
|- 2 e. CC |
| 171 |
170 46
|
div0i |
|- ( 0 / 2 ) = 0 |
| 172 |
171
|
a1i |
|- ( ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod _pi ) = 0 ) /\ ( X mod T ) = _pi ) -> ( 0 / 2 ) = 0 ) |
| 173 |
|
iftrue |
|- ( ( X mod _pi ) = 0 -> if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) = 0 ) |
| 174 |
4 173
|
eqtr2id |
|- ( ( X mod _pi ) = 0 -> 0 = Y ) |
| 175 |
174
|
ad2antlr |
|- ( ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod _pi ) = 0 ) /\ ( X mod T ) = _pi ) -> 0 = Y ) |
| 176 |
169 172 175
|
3eqtrrd |
|- ( ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod _pi ) = 0 ) /\ ( X mod T ) = _pi ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 177 |
137 176
|
mpdan |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod _pi ) = 0 ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 178 |
|
iftrue |
|- ( ( X mod T ) e. ( 0 (,] _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 ) |
| 179 |
178
|
adantr |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 ) |
| 180 |
141
|
a1i |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( X mod T ) e. RR ) |
| 181 |
36
|
a1i |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> _pi e. RR ) |
| 182 |
|
iocleub |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 (,] _pi ) ) -> ( X mod T ) <_ _pi ) |
| 183 |
129 130 182
|
mp3an12 |
|- ( ( X mod T ) e. ( 0 (,] _pi ) -> ( X mod T ) <_ _pi ) |
| 184 |
183
|
adantr |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( X mod T ) <_ _pi ) |
| 185 |
|
ax-1cn |
|- 1 e. CC |
| 186 |
185 17
|
mulcomi |
|- ( 1 x. _pi ) = ( _pi x. 1 ) |
| 187 |
85 186
|
eqtr3i |
|- _pi = ( _pi x. 1 ) |
| 188 |
187
|
oveq1i |
|- ( _pi + ( _pi x. ( 2 x. ( |_ ` ( X / T ) ) ) ) ) = ( ( _pi x. 1 ) + ( _pi x. ( 2 x. ( |_ ` ( X / T ) ) ) ) ) |
| 189 |
170 17
|
mulcomi |
|- ( 2 x. _pi ) = ( _pi x. 2 ) |
| 190 |
1 189
|
eqtri |
|- T = ( _pi x. 2 ) |
| 191 |
190
|
oveq1i |
|- ( T x. ( |_ ` ( X / T ) ) ) = ( ( _pi x. 2 ) x. ( |_ ` ( X / T ) ) ) |
| 192 |
113 64
|
gtneii |
|- T =/= 0 |
| 193 |
3 61 192
|
redivcli |
|- ( X / T ) e. RR |
| 194 |
|
flcl |
|- ( ( X / T ) e. RR -> ( |_ ` ( X / T ) ) e. ZZ ) |
| 195 |
193 194
|
ax-mp |
|- ( |_ ` ( X / T ) ) e. ZZ |
| 196 |
|
zcn |
|- ( ( |_ ` ( X / T ) ) e. ZZ -> ( |_ ` ( X / T ) ) e. CC ) |
| 197 |
195 196
|
ax-mp |
|- ( |_ ` ( X / T ) ) e. CC |
| 198 |
17 170 197
|
mulassi |
|- ( ( _pi x. 2 ) x. ( |_ ` ( X / T ) ) ) = ( _pi x. ( 2 x. ( |_ ` ( X / T ) ) ) ) |
| 199 |
191 198
|
eqtri |
|- ( T x. ( |_ ` ( X / T ) ) ) = ( _pi x. ( 2 x. ( |_ ` ( X / T ) ) ) ) |
| 200 |
199
|
oveq2i |
|- ( _pi + ( T x. ( |_ ` ( X / T ) ) ) ) = ( _pi + ( _pi x. ( 2 x. ( |_ ` ( X / T ) ) ) ) ) |
| 201 |
170 197
|
mulcli |
|- ( 2 x. ( |_ ` ( X / T ) ) ) e. CC |
| 202 |
17 185 201
|
adddii |
|- ( _pi x. ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) = ( ( _pi x. 1 ) + ( _pi x. ( 2 x. ( |_ ` ( X / T ) ) ) ) ) |
| 203 |
188 200 202
|
3eqtr4ri |
|- ( _pi x. ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) = ( _pi + ( T x. ( |_ ` ( X / T ) ) ) ) |
| 204 |
203
|
a1i |
|- ( _pi = ( X mod T ) -> ( _pi x. ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) = ( _pi + ( T x. ( |_ ` ( X / T ) ) ) ) ) |
| 205 |
|
id |
|- ( _pi = ( X mod T ) -> _pi = ( X mod T ) ) |
| 206 |
|
modval |
|- ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) = ( X - ( T x. ( |_ ` ( X / T ) ) ) ) ) |
| 207 |
3 65 206
|
mp2an |
|- ( X mod T ) = ( X - ( T x. ( |_ ` ( X / T ) ) ) ) |
| 208 |
205 207
|
eqtrdi |
|- ( _pi = ( X mod T ) -> _pi = ( X - ( T x. ( |_ ` ( X / T ) ) ) ) ) |
| 209 |
208
|
oveq1d |
|- ( _pi = ( X mod T ) -> ( _pi + ( T x. ( |_ ` ( X / T ) ) ) ) = ( ( X - ( T x. ( |_ ` ( X / T ) ) ) ) + ( T x. ( |_ ` ( X / T ) ) ) ) ) |
| 210 |
30
|
a1i |
|- ( _pi = ( X mod T ) -> X e. CC ) |
| 211 |
61
|
recni |
|- T e. CC |
| 212 |
211 197
|
mulcli |
|- ( T x. ( |_ ` ( X / T ) ) ) e. CC |
| 213 |
212
|
a1i |
|- ( _pi = ( X mod T ) -> ( T x. ( |_ ` ( X / T ) ) ) e. CC ) |
| 214 |
210 213
|
npcand |
|- ( _pi = ( X mod T ) -> ( ( X - ( T x. ( |_ ` ( X / T ) ) ) ) + ( T x. ( |_ ` ( X / T ) ) ) ) = X ) |
| 215 |
204 209 214
|
3eqtrrd |
|- ( _pi = ( X mod T ) -> X = ( _pi x. ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) ) |
| 216 |
215
|
oveq1d |
|- ( _pi = ( X mod T ) -> ( X / _pi ) = ( ( _pi x. ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) / _pi ) ) |
| 217 |
185 201
|
addcli |
|- ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) e. CC |
| 218 |
217 17 38
|
divcan3i |
|- ( ( _pi x. ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) / _pi ) = ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) |
| 219 |
216 218
|
eqtrdi |
|- ( _pi = ( X mod T ) -> ( X / _pi ) = ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) ) |
| 220 |
|
1z |
|- 1 e. ZZ |
| 221 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( |_ ` ( X / T ) ) e. ZZ ) -> ( 2 x. ( |_ ` ( X / T ) ) ) e. ZZ ) |
| 222 |
6 195 221
|
mp2an |
|- ( 2 x. ( |_ ` ( X / T ) ) ) e. ZZ |
| 223 |
|
zaddcl |
|- ( ( 1 e. ZZ /\ ( 2 x. ( |_ ` ( X / T ) ) ) e. ZZ ) -> ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) e. ZZ ) |
| 224 |
220 222 223
|
mp2an |
|- ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) e. ZZ |
| 225 |
224
|
a1i |
|- ( _pi = ( X mod T ) -> ( 1 + ( 2 x. ( |_ ` ( X / T ) ) ) ) e. ZZ ) |
| 226 |
219 225
|
eqeltrd |
|- ( _pi = ( X mod T ) -> ( X / _pi ) e. ZZ ) |
| 227 |
226 10
|
sylibr |
|- ( _pi = ( X mod T ) -> ( X mod _pi ) = 0 ) |
| 228 |
227
|
necon3bi |
|- ( -. ( X mod _pi ) = 0 -> _pi =/= ( X mod T ) ) |
| 229 |
228
|
adantl |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> _pi =/= ( X mod T ) ) |
| 230 |
180 181 184 229
|
leneltd |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( X mod T ) < _pi ) |
| 231 |
|
iftrue |
|- ( ( X mod T ) < _pi -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 232 |
157 231
|
eqtrid |
|- ( ( X mod T ) < _pi -> ( F ` X ) = 1 ) |
| 233 |
230 232
|
syl |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( F ` X ) = 1 ) |
| 234 |
179 233
|
oveq12d |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) = ( 1 + 1 ) ) |
| 235 |
234
|
oveq1d |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = ( ( 1 + 1 ) / 2 ) ) |
| 236 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 237 |
236
|
oveq1i |
|- ( ( 1 + 1 ) / 2 ) = ( 2 / 2 ) |
| 238 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
| 239 |
237 238
|
eqtr2i |
|- 1 = ( ( 1 + 1 ) / 2 ) |
| 240 |
233 239
|
eqtr2di |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( ( 1 + 1 ) / 2 ) = ( F ` X ) ) |
| 241 |
|
iffalse |
|- ( -. ( X mod _pi ) = 0 -> if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) = ( F ` X ) ) |
| 242 |
4 241
|
eqtr2id |
|- ( -. ( X mod _pi ) = 0 -> ( F ` X ) = Y ) |
| 243 |
242
|
adantl |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> ( F ` X ) = Y ) |
| 244 |
235 240 243
|
3eqtrrd |
|- ( ( ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod _pi ) = 0 ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 245 |
177 244
|
pm2.61dan |
|- ( ( X mod T ) e. ( 0 (,] _pi ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 246 |
133
|
necon2bi |
|- ( ( X mod T ) = 0 -> -. ( X mod T ) e. ( 0 (,] _pi ) ) |
| 247 |
246
|
iffalsed |
|- ( ( X mod T ) = 0 -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = -u 1 ) |
| 248 |
|
id |
|- ( ( X mod T ) = 0 -> ( X mod T ) = 0 ) |
| 249 |
248 37
|
eqbrtrdi |
|- ( ( X mod T ) = 0 -> ( X mod T ) < _pi ) |
| 250 |
249
|
iftrued |
|- ( ( X mod T ) = 0 -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 251 |
157 250
|
eqtrid |
|- ( ( X mod T ) = 0 -> ( F ` X ) = 1 ) |
| 252 |
247 251
|
oveq12d |
|- ( ( X mod T ) = 0 -> ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) = ( -u 1 + 1 ) ) |
| 253 |
252
|
oveq1d |
|- ( ( X mod T ) = 0 -> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = ( ( -u 1 + 1 ) / 2 ) ) |
| 254 |
|
neg1cn |
|- -u 1 e. CC |
| 255 |
185 254 166
|
addcomli |
|- ( -u 1 + 1 ) = 0 |
| 256 |
255
|
oveq1i |
|- ( ( -u 1 + 1 ) / 2 ) = ( 0 / 2 ) |
| 257 |
256 171
|
eqtri |
|- ( ( -u 1 + 1 ) / 2 ) = 0 |
| 258 |
257
|
a1i |
|- ( ( X mod T ) = 0 -> ( ( -u 1 + 1 ) / 2 ) = 0 ) |
| 259 |
1
|
oveq2i |
|- ( X / T ) = ( X / ( 2 x. _pi ) ) |
| 260 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 261 |
17 38
|
pm3.2i |
|- ( _pi e. CC /\ _pi =/= 0 ) |
| 262 |
|
divdiv1 |
|- ( ( X e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( X / 2 ) / _pi ) = ( X / ( 2 x. _pi ) ) ) |
| 263 |
30 260 261 262
|
mp3an |
|- ( ( X / 2 ) / _pi ) = ( X / ( 2 x. _pi ) ) |
| 264 |
30 170 17 46 38
|
divdiv32i |
|- ( ( X / 2 ) / _pi ) = ( ( X / _pi ) / 2 ) |
| 265 |
259 263 264
|
3eqtr2i |
|- ( X / T ) = ( ( X / _pi ) / 2 ) |
| 266 |
265
|
oveq2i |
|- ( 2 x. ( X / T ) ) = ( 2 x. ( ( X / _pi ) / 2 ) ) |
| 267 |
30 17 38
|
divcli |
|- ( X / _pi ) e. CC |
| 268 |
267 170 46
|
divcan2i |
|- ( 2 x. ( ( X / _pi ) / 2 ) ) = ( X / _pi ) |
| 269 |
266 268
|
eqtr2i |
|- ( X / _pi ) = ( 2 x. ( X / T ) ) |
| 270 |
6
|
a1i |
|- ( ( X / T ) e. ZZ -> 2 e. ZZ ) |
| 271 |
|
id |
|- ( ( X / T ) e. ZZ -> ( X / T ) e. ZZ ) |
| 272 |
270 271
|
zmulcld |
|- ( ( X / T ) e. ZZ -> ( 2 x. ( X / T ) ) e. ZZ ) |
| 273 |
269 272
|
eqeltrid |
|- ( ( X / T ) e. ZZ -> ( X / _pi ) e. ZZ ) |
| 274 |
67 273
|
sylbi |
|- ( ( X mod T ) = 0 -> ( X / _pi ) e. ZZ ) |
| 275 |
274 10
|
sylibr |
|- ( ( X mod T ) = 0 -> ( X mod _pi ) = 0 ) |
| 276 |
275
|
iftrued |
|- ( ( X mod T ) = 0 -> if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) = 0 ) |
| 277 |
4 276
|
eqtr2id |
|- ( ( X mod T ) = 0 -> 0 = Y ) |
| 278 |
253 258 277
|
3eqtrrd |
|- ( ( X mod T ) = 0 -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 279 |
278
|
adantl |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ ( X mod T ) = 0 ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 280 |
130
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> _pi e. RR* ) |
| 281 |
61
|
rexri |
|- T e. RR* |
| 282 |
281
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> T e. RR* ) |
| 283 |
141
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. RR ) |
| 284 |
|
pm4.56 |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) <-> -. ( ( X mod T ) e. ( 0 (,] _pi ) \/ ( X mod T ) = 0 ) ) |
| 285 |
284
|
biimpi |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> -. ( ( X mod T ) e. ( 0 (,] _pi ) \/ ( X mod T ) = 0 ) ) |
| 286 |
|
olc |
|- ( ( X mod T ) = 0 -> ( ( X mod T ) e. ( 0 (,] _pi ) \/ ( X mod T ) = 0 ) ) |
| 287 |
286
|
adantl |
|- ( ( ( X mod T ) <_ _pi /\ ( X mod T ) = 0 ) -> ( ( X mod T ) e. ( 0 (,] _pi ) \/ ( X mod T ) = 0 ) ) |
| 288 |
129
|
a1i |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> 0 e. RR* ) |
| 289 |
130
|
a1i |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> _pi e. RR* ) |
| 290 |
142
|
a1i |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. RR* ) |
| 291 |
|
0red |
|- ( -. ( X mod T ) = 0 -> 0 e. RR ) |
| 292 |
141
|
a1i |
|- ( -. ( X mod T ) = 0 -> ( X mod T ) e. RR ) |
| 293 |
|
modge0 |
|- ( ( X e. RR /\ T e. RR+ ) -> 0 <_ ( X mod T ) ) |
| 294 |
3 65 293
|
mp2an |
|- 0 <_ ( X mod T ) |
| 295 |
294
|
a1i |
|- ( -. ( X mod T ) = 0 -> 0 <_ ( X mod T ) ) |
| 296 |
|
neqne |
|- ( -. ( X mod T ) = 0 -> ( X mod T ) =/= 0 ) |
| 297 |
291 292 295 296
|
leneltd |
|- ( -. ( X mod T ) = 0 -> 0 < ( X mod T ) ) |
| 298 |
297
|
adantl |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> 0 < ( X mod T ) ) |
| 299 |
|
simpl |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> ( X mod T ) <_ _pi ) |
| 300 |
288 289 290 298 299
|
eliocd |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. ( 0 (,] _pi ) ) |
| 301 |
300
|
orcd |
|- ( ( ( X mod T ) <_ _pi /\ -. ( X mod T ) = 0 ) -> ( ( X mod T ) e. ( 0 (,] _pi ) \/ ( X mod T ) = 0 ) ) |
| 302 |
287 301
|
pm2.61dan |
|- ( ( X mod T ) <_ _pi -> ( ( X mod T ) e. ( 0 (,] _pi ) \/ ( X mod T ) = 0 ) ) |
| 303 |
285 302
|
nsyl |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> -. ( X mod T ) <_ _pi ) |
| 304 |
36
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> _pi e. RR ) |
| 305 |
304 283
|
ltnled |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> ( _pi < ( X mod T ) <-> -. ( X mod T ) <_ _pi ) ) |
| 306 |
303 305
|
mpbird |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> _pi < ( X mod T ) ) |
| 307 |
|
modlt |
|- ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) < T ) |
| 308 |
3 65 307
|
mp2an |
|- ( X mod T ) < T |
| 309 |
308
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) < T ) |
| 310 |
280 282 283 306 309
|
eliood |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. ( _pi (,) T ) ) |
| 311 |
129
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> 0 e. RR* ) |
| 312 |
36
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> _pi e. RR ) |
| 313 |
142
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( X mod T ) e. RR* ) |
| 314 |
|
ioogtlb |
|- ( ( _pi e. RR* /\ T e. RR* /\ ( X mod T ) e. ( _pi (,) T ) ) -> _pi < ( X mod T ) ) |
| 315 |
130 281 314
|
mp3an12 |
|- ( ( X mod T ) e. ( _pi (,) T ) -> _pi < ( X mod T ) ) |
| 316 |
311 312 313 315
|
gtnelioc |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -. ( X mod T ) e. ( 0 (,] _pi ) ) |
| 317 |
316
|
iffalsed |
|- ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = -u 1 ) |
| 318 |
141
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( X mod T ) e. RR ) |
| 319 |
312 318 315
|
ltnsymd |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -. ( X mod T ) < _pi ) |
| 320 |
319
|
iffalsed |
|- ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 321 |
157 320
|
eqtrid |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( F ` X ) = -u 1 ) |
| 322 |
317 321
|
oveq12d |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) = ( -u 1 + -u 1 ) ) |
| 323 |
322
|
oveq1d |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = ( ( -u 1 + -u 1 ) / 2 ) ) |
| 324 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 325 |
324
|
negeqi |
|- -u 2 = -u ( 1 + 1 ) |
| 326 |
185 185
|
negdii |
|- -u ( 1 + 1 ) = ( -u 1 + -u 1 ) |
| 327 |
325 326
|
eqtr2i |
|- ( -u 1 + -u 1 ) = -u 2 |
| 328 |
327
|
oveq1i |
|- ( ( -u 1 + -u 1 ) / 2 ) = ( -u 2 / 2 ) |
| 329 |
|
divneg |
|- ( ( 2 e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( 2 / 2 ) = ( -u 2 / 2 ) ) |
| 330 |
170 170 46 329
|
mp3an |
|- -u ( 2 / 2 ) = ( -u 2 / 2 ) |
| 331 |
238
|
negeqi |
|- -u ( 2 / 2 ) = -u 1 |
| 332 |
328 330 331
|
3eqtr2i |
|- ( ( -u 1 + -u 1 ) / 2 ) = -u 1 |
| 333 |
332
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( -u 1 + -u 1 ) / 2 ) = -u 1 ) |
| 334 |
4
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> Y = if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) ) |
| 335 |
312 318
|
ltnled |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( _pi < ( X mod T ) <-> -. ( X mod T ) <_ _pi ) ) |
| 336 |
315 335
|
mpbid |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -. ( X mod T ) <_ _pi ) |
| 337 |
248 114
|
eqbrtrdi |
|- ( ( X mod T ) = 0 -> ( X mod T ) <_ _pi ) |
| 338 |
337
|
adantl |
|- ( ( ( X mod _pi ) = 0 /\ ( X mod T ) = 0 ) -> ( X mod T ) <_ _pi ) |
| 339 |
128
|
orcanai |
|- ( ( ( X mod _pi ) = 0 /\ -. ( X mod T ) = 0 ) -> ( X mod T ) = _pi ) |
| 340 |
339 146
|
syl |
|- ( ( ( X mod _pi ) = 0 /\ -. ( X mod T ) = 0 ) -> ( X mod T ) <_ _pi ) |
| 341 |
338 340
|
pm2.61dan |
|- ( ( X mod _pi ) = 0 -> ( X mod T ) <_ _pi ) |
| 342 |
336 341
|
nsyl |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -. ( X mod _pi ) = 0 ) |
| 343 |
342
|
iffalsed |
|- ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) = ( F ` X ) ) |
| 344 |
334 343 321
|
3eqtrrd |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -u 1 = Y ) |
| 345 |
323 333 344
|
3eqtrrd |
|- ( ( X mod T ) e. ( _pi (,) T ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 346 |
310 345
|
syl |
|- ( ( -. ( X mod T ) e. ( 0 (,] _pi ) /\ -. ( X mod T ) = 0 ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 347 |
279 346
|
pm2.61dan |
|- ( -. ( X mod T ) e. ( 0 (,] _pi ) -> Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 348 |
245 347
|
pm2.61i |
|- Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) |