| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fouriersw.t |
|- T = ( 2 x. _pi ) |
| 2 |
|
fouriersw.f |
|- F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 3 |
|
fouriersw.x |
|- X e. RR |
| 4 |
|
fouriersw.z |
|- S = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) |
| 5 |
|
fouriersw.y |
|- Y = if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) |
| 6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 7 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 8 |
|
eqidd |
|- ( k e. NN -> ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) |
| 9 |
|
oveq2 |
|- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
| 10 |
9
|
oveq1d |
|- ( n = k -> ( ( 2 x. n ) - 1 ) = ( ( 2 x. k ) - 1 ) ) |
| 11 |
10
|
oveq1d |
|- ( n = k -> ( ( ( 2 x. n ) - 1 ) x. X ) = ( ( ( 2 x. k ) - 1 ) x. X ) ) |
| 12 |
11
|
fveq2d |
|- ( n = k -> ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) = ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) |
| 13 |
12 10
|
oveq12d |
|- ( n = k -> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 14 |
13
|
adantl |
|- ( ( k e. NN /\ n = k ) -> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 15 |
|
id |
|- ( k e. NN -> k e. NN ) |
| 16 |
|
ovex |
|- ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. _V |
| 17 |
16
|
a1i |
|- ( k e. NN -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. _V ) |
| 18 |
8 14 15 17
|
fvmptd |
|- ( k e. NN -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 19 |
18
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 20 |
|
2z |
|- 2 e. ZZ |
| 21 |
20
|
a1i |
|- ( k e. NN -> 2 e. ZZ ) |
| 22 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 23 |
21 22
|
zmulcld |
|- ( k e. NN -> ( 2 x. k ) e. ZZ ) |
| 24 |
|
1zzd |
|- ( k e. NN -> 1 e. ZZ ) |
| 25 |
23 24
|
zsubcld |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. ZZ ) |
| 26 |
25
|
zcnd |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. CC ) |
| 27 |
3
|
recni |
|- X e. CC |
| 28 |
27
|
a1i |
|- ( k e. NN -> X e. CC ) |
| 29 |
26 28
|
mulcld |
|- ( k e. NN -> ( ( ( 2 x. k ) - 1 ) x. X ) e. CC ) |
| 30 |
29
|
sincld |
|- ( k e. NN -> ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) e. CC ) |
| 31 |
|
0red |
|- ( k e. NN -> 0 e. RR ) |
| 32 |
|
2re |
|- 2 e. RR |
| 33 |
32
|
a1i |
|- ( k e. NN -> 2 e. RR ) |
| 34 |
|
1red |
|- ( k e. NN -> 1 e. RR ) |
| 35 |
33 34
|
remulcld |
|- ( k e. NN -> ( 2 x. 1 ) e. RR ) |
| 36 |
35 34
|
resubcld |
|- ( k e. NN -> ( ( 2 x. 1 ) - 1 ) e. RR ) |
| 37 |
25
|
zred |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. RR ) |
| 38 |
|
0lt1 |
|- 0 < 1 |
| 39 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 40 |
39
|
oveq1i |
|- ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 ) |
| 41 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 42 |
40 41
|
eqtr2i |
|- 1 = ( ( 2 x. 1 ) - 1 ) |
| 43 |
38 42
|
breqtri |
|- 0 < ( ( 2 x. 1 ) - 1 ) |
| 44 |
43
|
a1i |
|- ( k e. NN -> 0 < ( ( 2 x. 1 ) - 1 ) ) |
| 45 |
23
|
zred |
|- ( k e. NN -> ( 2 x. k ) e. RR ) |
| 46 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 47 |
|
0le2 |
|- 0 <_ 2 |
| 48 |
47
|
a1i |
|- ( k e. NN -> 0 <_ 2 ) |
| 49 |
|
nnge1 |
|- ( k e. NN -> 1 <_ k ) |
| 50 |
34 46 33 48 49
|
lemul2ad |
|- ( k e. NN -> ( 2 x. 1 ) <_ ( 2 x. k ) ) |
| 51 |
35 45 34 50
|
lesub1dd |
|- ( k e. NN -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. k ) - 1 ) ) |
| 52 |
31 36 37 44 51
|
ltletrd |
|- ( k e. NN -> 0 < ( ( 2 x. k ) - 1 ) ) |
| 53 |
31 52
|
gtned |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) =/= 0 ) |
| 54 |
30 26 53
|
divcld |
|- ( k e. NN -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. CC ) |
| 55 |
54
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. CC ) |
| 56 |
|
picn |
|- _pi e. CC |
| 57 |
56
|
a1i |
|- ( T. -> _pi e. CC ) |
| 58 |
|
4cn |
|- 4 e. CC |
| 59 |
58
|
a1i |
|- ( T. -> 4 e. CC ) |
| 60 |
|
4ne0 |
|- 4 =/= 0 |
| 61 |
60
|
a1i |
|- ( T. -> 4 =/= 0 ) |
| 62 |
57 59 61
|
divcld |
|- ( T. -> ( _pi / 4 ) e. CC ) |
| 63 |
|
eqid |
|- ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) = ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 64 |
|
0cnd |
|- ( n e. NN -> 0 e. CC ) |
| 65 |
58
|
a1i |
|- ( n e. NN -> 4 e. CC ) |
| 66 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 67 |
|
mulcl |
|- ( ( n e. CC /\ _pi e. CC ) -> ( n x. _pi ) e. CC ) |
| 68 |
66 56 67
|
sylancl |
|- ( n e. NN -> ( n x. _pi ) e. CC ) |
| 69 |
56
|
a1i |
|- ( n e. NN -> _pi e. CC ) |
| 70 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 71 |
|
0re |
|- 0 e. RR |
| 72 |
|
pipos |
|- 0 < _pi |
| 73 |
71 72
|
gtneii |
|- _pi =/= 0 |
| 74 |
73
|
a1i |
|- ( n e. NN -> _pi =/= 0 ) |
| 75 |
66 69 70 74
|
mulne0d |
|- ( n e. NN -> ( n x. _pi ) =/= 0 ) |
| 76 |
65 68 75
|
divcld |
|- ( n e. NN -> ( 4 / ( n x. _pi ) ) e. CC ) |
| 77 |
27
|
a1i |
|- ( n e. NN -> X e. CC ) |
| 78 |
66 77
|
mulcld |
|- ( n e. NN -> ( n x. X ) e. CC ) |
| 79 |
78
|
sincld |
|- ( n e. NN -> ( sin ` ( n x. X ) ) e. CC ) |
| 80 |
76 79
|
mulcld |
|- ( n e. NN -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) e. CC ) |
| 81 |
64 80
|
ifcld |
|- ( n e. NN -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) e. CC ) |
| 82 |
63 81
|
fmpti |
|- ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) : NN --> CC |
| 83 |
82
|
a1i |
|- ( T. -> ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) : NN --> CC ) |
| 84 |
|
eqidd |
|- ( k e. NN -> ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) = ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
| 85 |
|
breq2 |
|- ( n = k -> ( 2 || n <-> 2 || k ) ) |
| 86 |
|
oveq1 |
|- ( n = k -> ( n x. _pi ) = ( k x. _pi ) ) |
| 87 |
86
|
oveq2d |
|- ( n = k -> ( 4 / ( n x. _pi ) ) = ( 4 / ( k x. _pi ) ) ) |
| 88 |
|
oveq1 |
|- ( n = k -> ( n x. X ) = ( k x. X ) ) |
| 89 |
88
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) |
| 90 |
87 89
|
oveq12d |
|- ( n = k -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) |
| 91 |
85 90
|
ifbieq2d |
|- ( n = k -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 92 |
91
|
adantl |
|- ( ( k e. NN /\ n = k ) -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 93 |
|
c0ex |
|- 0 e. _V |
| 94 |
|
ovex |
|- ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) e. _V |
| 95 |
93 94
|
ifex |
|- if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) e. _V |
| 96 |
95
|
a1i |
|- ( k e. NN -> if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) e. _V ) |
| 97 |
84 92 15 96
|
fvmptd |
|- ( k e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 98 |
97
|
adantr |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) ) |
| 99 |
|
simpr |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( k / 2 ) e. NN ) |
| 100 |
|
simpl |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> k e. NN ) |
| 101 |
|
2nn |
|- 2 e. NN |
| 102 |
|
nndivdvds |
|- ( ( k e. NN /\ 2 e. NN ) -> ( 2 || k <-> ( k / 2 ) e. NN ) ) |
| 103 |
100 101 102
|
sylancl |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( 2 || k <-> ( k / 2 ) e. NN ) ) |
| 104 |
99 103
|
mpbird |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> 2 || k ) |
| 105 |
104
|
iftrued |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) = 0 ) |
| 106 |
98 105
|
eqtrd |
|- ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = 0 ) |
| 107 |
106
|
3adant1 |
|- ( ( T. /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = 0 ) |
| 108 |
|
1re |
|- 1 e. RR |
| 109 |
108
|
renegcli |
|- -u 1 e. RR |
| 110 |
108 109
|
ifcli |
|- if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR |
| 111 |
110
|
a1i |
|- ( x e. RR -> if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) |
| 112 |
2 111
|
fmpti |
|- F : RR --> RR |
| 113 |
|
oveq1 |
|- ( x = y -> ( x mod T ) = ( y mod T ) ) |
| 114 |
113
|
breq1d |
|- ( x = y -> ( ( x mod T ) < _pi <-> ( y mod T ) < _pi ) ) |
| 115 |
114
|
ifbid |
|- ( x = y -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( y mod T ) < _pi , 1 , -u 1 ) ) |
| 116 |
115
|
cbvmptv |
|- ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) = ( y e. RR |-> if ( ( y mod T ) < _pi , 1 , -u 1 ) ) |
| 117 |
2 116
|
eqtri |
|- F = ( y e. RR |-> if ( ( y mod T ) < _pi , 1 , -u 1 ) ) |
| 118 |
117
|
a1i |
|- ( x e. RR -> F = ( y e. RR |-> if ( ( y mod T ) < _pi , 1 , -u 1 ) ) ) |
| 119 |
|
oveq1 |
|- ( y = ( x + T ) -> ( y mod T ) = ( ( x + T ) mod T ) ) |
| 120 |
|
pire |
|- _pi e. RR |
| 121 |
32 120
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 122 |
1 121
|
eqeltri |
|- T e. RR |
| 123 |
122
|
recni |
|- T e. CC |
| 124 |
123
|
mullidi |
|- ( 1 x. T ) = T |
| 125 |
124
|
eqcomi |
|- T = ( 1 x. T ) |
| 126 |
125
|
oveq2i |
|- ( x + T ) = ( x + ( 1 x. T ) ) |
| 127 |
126
|
oveq1i |
|- ( ( x + T ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) |
| 128 |
119 127
|
eqtrdi |
|- ( y = ( x + T ) -> ( y mod T ) = ( ( x + ( 1 x. T ) ) mod T ) ) |
| 129 |
128
|
adantl |
|- ( ( x e. RR /\ y = ( x + T ) ) -> ( y mod T ) = ( ( x + ( 1 x. T ) ) mod T ) ) |
| 130 |
|
simpl |
|- ( ( x e. RR /\ y = ( x + T ) ) -> x e. RR ) |
| 131 |
|
2pos |
|- 0 < 2 |
| 132 |
32 120 131 72
|
mulgt0ii |
|- 0 < ( 2 x. _pi ) |
| 133 |
1
|
eqcomi |
|- ( 2 x. _pi ) = T |
| 134 |
132 133
|
breqtri |
|- 0 < T |
| 135 |
122 134
|
elrpii |
|- T e. RR+ |
| 136 |
135
|
a1i |
|- ( ( x e. RR /\ y = ( x + T ) ) -> T e. RR+ ) |
| 137 |
|
1zzd |
|- ( ( x e. RR /\ y = ( x + T ) ) -> 1 e. ZZ ) |
| 138 |
|
modcyc |
|- ( ( x e. RR /\ T e. RR+ /\ 1 e. ZZ ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
| 139 |
130 136 137 138
|
syl3anc |
|- ( ( x e. RR /\ y = ( x + T ) ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
| 140 |
129 139
|
eqtrd |
|- ( ( x e. RR /\ y = ( x + T ) ) -> ( y mod T ) = ( x mod T ) ) |
| 141 |
140
|
breq1d |
|- ( ( x e. RR /\ y = ( x + T ) ) -> ( ( y mod T ) < _pi <-> ( x mod T ) < _pi ) ) |
| 142 |
141
|
ifbid |
|- ( ( x e. RR /\ y = ( x + T ) ) -> if ( ( y mod T ) < _pi , 1 , -u 1 ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 143 |
|
id |
|- ( x e. RR -> x e. RR ) |
| 144 |
122
|
a1i |
|- ( x e. RR -> T e. RR ) |
| 145 |
143 144
|
readdcld |
|- ( x e. RR -> ( x + T ) e. RR ) |
| 146 |
118 142 145 111
|
fvmptd |
|- ( x e. RR -> ( F ` ( x + T ) ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 147 |
2
|
fvmpt2 |
|- ( ( x e. RR /\ if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 148 |
110 147
|
mpan2 |
|- ( x e. RR -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 149 |
146 148
|
eqtr4d |
|- ( x e. RR -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 150 |
|
eqid |
|- ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 151 |
|
snfi |
|- { 0 } e. Fin |
| 152 |
|
eldifi |
|- ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. ( -u _pi (,) _pi ) ) |
| 153 |
|
0xr |
|- 0 e. RR* |
| 154 |
153
|
a1i |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> 0 e. RR* ) |
| 155 |
120
|
rexri |
|- _pi e. RR* |
| 156 |
155
|
a1i |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> _pi e. RR* ) |
| 157 |
|
elioore |
|- ( x e. ( -u _pi (,) _pi ) -> x e. RR ) |
| 158 |
157
|
adantr |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x e. RR ) |
| 159 |
|
simpr |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> 0 < x ) |
| 160 |
120
|
renegcli |
|- -u _pi e. RR |
| 161 |
160
|
rexri |
|- -u _pi e. RR* |
| 162 |
|
iooltub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,) _pi ) ) -> x < _pi ) |
| 163 |
161 155 162
|
mp3an12 |
|- ( x e. ( -u _pi (,) _pi ) -> x < _pi ) |
| 164 |
163
|
adantr |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x < _pi ) |
| 165 |
154 156 158 159 164
|
eliood |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x e. ( 0 (,) _pi ) ) |
| 166 |
|
negpilt0 |
|- -u _pi < 0 |
| 167 |
160 71 166
|
ltleii |
|- -u _pi <_ 0 |
| 168 |
|
iooss1 |
|- ( ( -u _pi e. RR* /\ -u _pi <_ 0 ) -> ( 0 (,) _pi ) C_ ( -u _pi (,) _pi ) ) |
| 169 |
161 167 168
|
mp2an |
|- ( 0 (,) _pi ) C_ ( -u _pi (,) _pi ) |
| 170 |
169
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. ( -u _pi (,) _pi ) ) |
| 171 |
2
|
reseq1i |
|- ( F |` ( 0 (,) _pi ) ) = ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( 0 (,) _pi ) ) |
| 172 |
|
ioossre |
|- ( 0 (,) _pi ) C_ RR |
| 173 |
|
resmpt |
|- ( ( 0 (,) _pi ) C_ RR -> ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) ) |
| 174 |
172 173
|
ax-mp |
|- ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 175 |
|
elioore |
|- ( x e. ( 0 (,) _pi ) -> x e. RR ) |
| 176 |
135
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> T e. RR+ ) |
| 177 |
|
0red |
|- ( x e. ( 0 (,) _pi ) -> 0 e. RR ) |
| 178 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ x e. ( 0 (,) _pi ) ) -> 0 < x ) |
| 179 |
153 155 178
|
mp3an12 |
|- ( x e. ( 0 (,) _pi ) -> 0 < x ) |
| 180 |
177 175 179
|
ltled |
|- ( x e. ( 0 (,) _pi ) -> 0 <_ x ) |
| 181 |
120
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi e. RR ) |
| 182 |
122
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> T e. RR ) |
| 183 |
170 163
|
syl |
|- ( x e. ( 0 (,) _pi ) -> x < _pi ) |
| 184 |
|
pirp |
|- _pi e. RR+ |
| 185 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
| 186 |
184 185
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
| 187 |
186 133
|
breqtri |
|- _pi < T |
| 188 |
187
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi < T ) |
| 189 |
175 181 182 183 188
|
lttrd |
|- ( x e. ( 0 (,) _pi ) -> x < T ) |
| 190 |
|
modid |
|- ( ( ( x e. RR /\ T e. RR+ ) /\ ( 0 <_ x /\ x < T ) ) -> ( x mod T ) = x ) |
| 191 |
175 176 180 189 190
|
syl22anc |
|- ( x e. ( 0 (,) _pi ) -> ( x mod T ) = x ) |
| 192 |
191 183
|
eqbrtrd |
|- ( x e. ( 0 (,) _pi ) -> ( x mod T ) < _pi ) |
| 193 |
192
|
iftrued |
|- ( x e. ( 0 (,) _pi ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 194 |
193
|
mpteq2ia |
|- ( x e. ( 0 (,) _pi ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) = ( x e. ( 0 (,) _pi ) |-> 1 ) |
| 195 |
171 174 194
|
3eqtrri |
|- ( x e. ( 0 (,) _pi ) |-> 1 ) = ( F |` ( 0 (,) _pi ) ) |
| 196 |
195
|
oveq2i |
|- ( RR _D ( x e. ( 0 (,) _pi ) |-> 1 ) ) = ( RR _D ( F |` ( 0 (,) _pi ) ) ) |
| 197 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 198 |
197
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 199 |
|
iooretop |
|- ( 0 (,) _pi ) e. ( topGen ` ran (,) ) |
| 200 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 201 |
199 200
|
eleqtri |
|- ( 0 (,) _pi ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 202 |
201
|
a1i |
|- ( T. -> ( 0 (,) _pi ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 203 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
| 204 |
198 202 203
|
dvmptconst |
|- ( T. -> ( RR _D ( x e. ( 0 (,) _pi ) |-> 1 ) ) = ( x e. ( 0 (,) _pi ) |-> 0 ) ) |
| 205 |
204
|
mptru |
|- ( RR _D ( x e. ( 0 (,) _pi ) |-> 1 ) ) = ( x e. ( 0 (,) _pi ) |-> 0 ) |
| 206 |
|
ssid |
|- RR C_ RR |
| 207 |
|
ax-resscn |
|- RR C_ CC |
| 208 |
|
fss |
|- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
| 209 |
112 207 208
|
mp2an |
|- F : RR --> CC |
| 210 |
|
dvresioo |
|- ( ( RR C_ RR /\ F : RR --> CC ) -> ( RR _D ( F |` ( 0 (,) _pi ) ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) ) |
| 211 |
206 209 210
|
mp2an |
|- ( RR _D ( F |` ( 0 (,) _pi ) ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) |
| 212 |
196 205 211
|
3eqtr3i |
|- ( x e. ( 0 (,) _pi ) |-> 0 ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) |
| 213 |
212
|
dmeqi |
|- dom ( x e. ( 0 (,) _pi ) |-> 0 ) = dom ( ( RR _D F ) |` ( 0 (,) _pi ) ) |
| 214 |
|
eqid |
|- ( x e. ( 0 (,) _pi ) |-> 0 ) = ( x e. ( 0 (,) _pi ) |-> 0 ) |
| 215 |
93 214
|
dmmpti |
|- dom ( x e. ( 0 (,) _pi ) |-> 0 ) = ( 0 (,) _pi ) |
| 216 |
213 215
|
eqtr3i |
|- dom ( ( RR _D F ) |` ( 0 (,) _pi ) ) = ( 0 (,) _pi ) |
| 217 |
|
ssdmres |
|- ( ( 0 (,) _pi ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( 0 (,) _pi ) ) = ( 0 (,) _pi ) ) |
| 218 |
216 217
|
mpbir |
|- ( 0 (,) _pi ) C_ dom ( RR _D F ) |
| 219 |
218
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. dom ( RR _D F ) ) |
| 220 |
170 219
|
elind |
|- ( x e. ( 0 (,) _pi ) -> x e. ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) ) |
| 221 |
|
dmres |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) |
| 222 |
220 221
|
eleqtrrdi |
|- ( x e. ( 0 (,) _pi ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 223 |
165 222
|
syl |
|- ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 224 |
223
|
adantlr |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ 0 < x ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 225 |
161
|
a1i |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> -u _pi e. RR* ) |
| 226 |
153
|
a1i |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> 0 e. RR* ) |
| 227 |
157
|
ad2antrr |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x e. RR ) |
| 228 |
|
ioogtlb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,) _pi ) ) -> -u _pi < x ) |
| 229 |
161 155 228
|
mp3an12 |
|- ( x e. ( -u _pi (,) _pi ) -> -u _pi < x ) |
| 230 |
229
|
ad2antrr |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> -u _pi < x ) |
| 231 |
|
0red |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> 0 e. RR ) |
| 232 |
|
neqne |
|- ( -. x = 0 -> x =/= 0 ) |
| 233 |
232
|
ad2antlr |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x =/= 0 ) |
| 234 |
|
simpr |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> -. 0 < x ) |
| 235 |
227 231 233 234
|
lttri5d |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x < 0 ) |
| 236 |
225 226 227 230 235
|
eliood |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x e. ( -u _pi (,) 0 ) ) |
| 237 |
71 120 72
|
ltleii |
|- 0 <_ _pi |
| 238 |
|
iooss2 |
|- ( ( _pi e. RR* /\ 0 <_ _pi ) -> ( -u _pi (,) 0 ) C_ ( -u _pi (,) _pi ) ) |
| 239 |
155 237 238
|
mp2an |
|- ( -u _pi (,) 0 ) C_ ( -u _pi (,) _pi ) |
| 240 |
239
|
sseli |
|- ( x e. ( -u _pi (,) 0 ) -> x e. ( -u _pi (,) _pi ) ) |
| 241 |
2
|
reseq1i |
|- ( F |` ( -u _pi (,) 0 ) ) = ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( -u _pi (,) 0 ) ) |
| 242 |
|
ioossre |
|- ( -u _pi (,) 0 ) C_ RR |
| 243 |
|
resmpt |
|- ( ( -u _pi (,) 0 ) C_ RR -> ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) ) |
| 244 |
242 243
|
ax-mp |
|- ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 245 |
120
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> _pi e. RR ) |
| 246 |
|
elioore |
|- ( x e. ( -u _pi (,) 0 ) -> x e. RR ) |
| 247 |
135
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. RR+ ) |
| 248 |
246 247
|
modcld |
|- ( x e. ( -u _pi (,) 0 ) -> ( x mod T ) e. RR ) |
| 249 |
246 145
|
syl |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) e. RR ) |
| 250 |
56
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
| 251 |
1 250
|
eqtri |
|- T = ( _pi + _pi ) |
| 252 |
251
|
oveq2i |
|- ( -u _pi + T ) = ( -u _pi + ( _pi + _pi ) ) |
| 253 |
|
negpicn |
|- -u _pi e. CC |
| 254 |
253 56 56
|
addassi |
|- ( ( -u _pi + _pi ) + _pi ) = ( -u _pi + ( _pi + _pi ) ) |
| 255 |
254
|
eqcomi |
|- ( -u _pi + ( _pi + _pi ) ) = ( ( -u _pi + _pi ) + _pi ) |
| 256 |
56
|
negidi |
|- ( _pi + -u _pi ) = 0 |
| 257 |
56 253 256
|
addcomli |
|- ( -u _pi + _pi ) = 0 |
| 258 |
257
|
oveq1i |
|- ( ( -u _pi + _pi ) + _pi ) = ( 0 + _pi ) |
| 259 |
56
|
addlidi |
|- ( 0 + _pi ) = _pi |
| 260 |
258 259
|
eqtri |
|- ( ( -u _pi + _pi ) + _pi ) = _pi |
| 261 |
252 255 260
|
3eqtrri |
|- _pi = ( -u _pi + T ) |
| 262 |
261
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> _pi = ( -u _pi + T ) ) |
| 263 |
160
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi e. RR ) |
| 264 |
122
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. RR ) |
| 265 |
240 229
|
syl |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi < x ) |
| 266 |
263 246 264 265
|
ltadd1dd |
|- ( x e. ( -u _pi (,) 0 ) -> ( -u _pi + T ) < ( x + T ) ) |
| 267 |
262 266
|
eqbrtrd |
|- ( x e. ( -u _pi (,) 0 ) -> _pi < ( x + T ) ) |
| 268 |
245 249 267
|
ltled |
|- ( x e. ( -u _pi (,) 0 ) -> _pi <_ ( x + T ) ) |
| 269 |
|
0red |
|- ( x e. ( -u _pi (,) 0 ) -> 0 e. RR ) |
| 270 |
160 122
|
readdcli |
|- ( -u _pi + T ) e. RR |
| 271 |
270
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> ( -u _pi + T ) e. RR ) |
| 272 |
72
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < _pi ) |
| 273 |
272 261
|
breqtrdi |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < ( -u _pi + T ) ) |
| 274 |
269 271 249 273 266
|
lttrd |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < ( x + T ) ) |
| 275 |
269 249 274
|
ltled |
|- ( x e. ( -u _pi (,) 0 ) -> 0 <_ ( x + T ) ) |
| 276 |
246
|
recnd |
|- ( x e. ( -u _pi (,) 0 ) -> x e. CC ) |
| 277 |
123
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. CC ) |
| 278 |
276 277
|
addcomd |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) = ( T + x ) ) |
| 279 |
|
iooltub |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ x e. ( -u _pi (,) 0 ) ) -> x < 0 ) |
| 280 |
161 153 279
|
mp3an12 |
|- ( x e. ( -u _pi (,) 0 ) -> x < 0 ) |
| 281 |
|
ltaddneg |
|- ( ( x e. RR /\ T e. RR ) -> ( x < 0 <-> ( T + x ) < T ) ) |
| 282 |
246 122 281
|
sylancl |
|- ( x e. ( -u _pi (,) 0 ) -> ( x < 0 <-> ( T + x ) < T ) ) |
| 283 |
280 282
|
mpbid |
|- ( x e. ( -u _pi (,) 0 ) -> ( T + x ) < T ) |
| 284 |
278 283
|
eqbrtrd |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) < T ) |
| 285 |
275 284
|
jca |
|- ( x e. ( -u _pi (,) 0 ) -> ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) |
| 286 |
|
modid2 |
|- ( ( ( x + T ) e. RR /\ T e. RR+ ) -> ( ( ( x + T ) mod T ) = ( x + T ) <-> ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) ) |
| 287 |
249 135 286
|
sylancl |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( ( x + T ) mod T ) = ( x + T ) <-> ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) ) |
| 288 |
285 287
|
mpbird |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( x + T ) mod T ) = ( x + T ) ) |
| 289 |
127
|
a1i |
|- ( x e. RR -> ( ( x + T ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) ) |
| 290 |
135
|
a1i |
|- ( x e. RR -> T e. RR+ ) |
| 291 |
|
1zzd |
|- ( x e. RR -> 1 e. ZZ ) |
| 292 |
143 290 291 138
|
syl3anc |
|- ( x e. RR -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
| 293 |
289 292
|
eqtrd |
|- ( x e. RR -> ( ( x + T ) mod T ) = ( x mod T ) ) |
| 294 |
246 293
|
syl |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( x + T ) mod T ) = ( x mod T ) ) |
| 295 |
288 294
|
eqtr3d |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) = ( x mod T ) ) |
| 296 |
268 295
|
breqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> _pi <_ ( x mod T ) ) |
| 297 |
245 248 296
|
lensymd |
|- ( x e. ( -u _pi (,) 0 ) -> -. ( x mod T ) < _pi ) |
| 298 |
297
|
iffalsed |
|- ( x e. ( -u _pi (,) 0 ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 299 |
298
|
mpteq2ia |
|- ( x e. ( -u _pi (,) 0 ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) = ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) |
| 300 |
241 244 299
|
3eqtrri |
|- ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) = ( F |` ( -u _pi (,) 0 ) ) |
| 301 |
300
|
oveq2i |
|- ( RR _D ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) ) = ( RR _D ( F |` ( -u _pi (,) 0 ) ) ) |
| 302 |
|
iooretop |
|- ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) |
| 303 |
302 200
|
eleqtri |
|- ( -u _pi (,) 0 ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 304 |
303
|
a1i |
|- ( T. -> ( -u _pi (,) 0 ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 305 |
203
|
negcld |
|- ( T. -> -u 1 e. CC ) |
| 306 |
198 304 305
|
dvmptconst |
|- ( T. -> ( RR _D ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) ) |
| 307 |
306
|
mptru |
|- ( RR _D ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) |
| 308 |
|
dvresioo |
|- ( ( RR C_ RR /\ F : RR --> CC ) -> ( RR _D ( F |` ( -u _pi (,) 0 ) ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) ) |
| 309 |
206 209 308
|
mp2an |
|- ( RR _D ( F |` ( -u _pi (,) 0 ) ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) |
| 310 |
301 307 309
|
3eqtr3i |
|- ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) |
| 311 |
310
|
dmeqi |
|- dom ( x e. ( -u _pi (,) 0 ) |-> 0 ) = dom ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) |
| 312 |
|
eqid |
|- ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) |
| 313 |
93 312
|
dmmpti |
|- dom ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( -u _pi (,) 0 ) |
| 314 |
311 313
|
eqtr3i |
|- dom ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) = ( -u _pi (,) 0 ) |
| 315 |
|
ssdmres |
|- ( ( -u _pi (,) 0 ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) = ( -u _pi (,) 0 ) ) |
| 316 |
314 315
|
mpbir |
|- ( -u _pi (,) 0 ) C_ dom ( RR _D F ) |
| 317 |
316
|
sseli |
|- ( x e. ( -u _pi (,) 0 ) -> x e. dom ( RR _D F ) ) |
| 318 |
240 317
|
elind |
|- ( x e. ( -u _pi (,) 0 ) -> x e. ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) ) |
| 319 |
318 221
|
eleqtrrdi |
|- ( x e. ( -u _pi (,) 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 320 |
236 319
|
syl |
|- ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 321 |
224 320
|
pm2.61dan |
|- ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 322 |
152 321
|
sylan |
|- ( ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 323 |
|
eldifn |
|- ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 324 |
323
|
adantr |
|- ( ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = 0 ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 325 |
322 324
|
condan |
|- ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x = 0 ) |
| 326 |
|
velsn |
|- ( x e. { 0 } <-> x = 0 ) |
| 327 |
325 326
|
sylibr |
|- ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. { 0 } ) |
| 328 |
327
|
ssriv |
|- ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) C_ { 0 } |
| 329 |
|
ssfi |
|- ( ( { 0 } e. Fin /\ ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) C_ { 0 } ) -> ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) e. Fin ) |
| 330 |
151 328 329
|
mp2an |
|- ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) e. Fin |
| 331 |
|
inss1 |
|- ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) C_ ( -u _pi (,) _pi ) |
| 332 |
221 331
|
eqsstri |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ ( -u _pi (,) _pi ) |
| 333 |
|
ioosscn |
|- ( -u _pi (,) _pi ) C_ CC |
| 334 |
332 333
|
sstri |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ CC |
| 335 |
334
|
a1i |
|- ( T. -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ CC ) |
| 336 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 337 |
|
fresin |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) --> CC ) |
| 338 |
|
ffdm |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) --> CC -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) ) ) |
| 339 |
336 337 338
|
mp2b |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) ) |
| 340 |
339
|
simpli |
|- ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC |
| 341 |
340
|
a1i |
|- ( T. -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC ) |
| 342 |
161
|
a1i |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> -u _pi e. RR* ) |
| 343 |
153
|
a1i |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> 0 e. RR* ) |
| 344 |
|
ioossre |
|- ( -u _pi (,) _pi ) C_ RR |
| 345 |
332
|
sseli |
|- ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. ( -u _pi (,) _pi ) ) |
| 346 |
344 345
|
sselid |
|- ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. RR ) |
| 347 |
346
|
adantr |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x e. RR ) |
| 348 |
345 229
|
syl |
|- ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> -u _pi < x ) |
| 349 |
348
|
adantr |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> -u _pi < x ) |
| 350 |
|
simpr |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x < 0 ) |
| 351 |
342 343 347 349 350
|
eliood |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x e. ( -u _pi (,) 0 ) ) |
| 352 |
|
elun1 |
|- ( x e. ( -u _pi (,) 0 ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) ) |
| 353 |
351 352
|
syl |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) ) |
| 354 |
|
simpl |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 355 |
|
0red |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> 0 e. RR ) |
| 356 |
346
|
adantr |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x e. RR ) |
| 357 |
|
simpr |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> -. x < 0 ) |
| 358 |
355 356 357
|
nltled |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> 0 <_ x ) |
| 359 |
|
id |
|- ( x = 0 -> x = 0 ) |
| 360 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 361 |
206
|
a1i |
|- ( T. -> RR C_ RR ) |
| 362 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 363 |
209
|
a1i |
|- ( T. -> F : RR --> CC ) |
| 364 |
|
0red |
|- ( T. -> 0 e. RR ) |
| 365 |
|
mnfxr |
|- -oo e. RR* |
| 366 |
365
|
a1i |
|- ( T. -> -oo e. RR* ) |
| 367 |
364
|
mnfltd |
|- ( T. -> -oo < 0 ) |
| 368 |
362 366 364 367
|
lptioo2 |
|- ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( -oo (,) 0 ) ) ) |
| 369 |
|
incom |
|- ( RR i^i ( -oo (,) 0 ) ) = ( ( -oo (,) 0 ) i^i RR ) |
| 370 |
|
ioossre |
|- ( -oo (,) 0 ) C_ RR |
| 371 |
|
dfss2 |
|- ( ( -oo (,) 0 ) C_ RR <-> ( ( -oo (,) 0 ) i^i RR ) = ( -oo (,) 0 ) ) |
| 372 |
370 371
|
mpbi |
|- ( ( -oo (,) 0 ) i^i RR ) = ( -oo (,) 0 ) |
| 373 |
369 372
|
eqtr2i |
|- ( -oo (,) 0 ) = ( RR i^i ( -oo (,) 0 ) ) |
| 374 |
373
|
fveq2i |
|- ( ( limPt ` ( topGen ` ran (,) ) ) ` ( -oo (,) 0 ) ) = ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( -oo (,) 0 ) ) ) |
| 375 |
368 374
|
eleqtrdi |
|- ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( -oo (,) 0 ) ) ) ) |
| 376 |
|
pnfxr |
|- +oo e. RR* |
| 377 |
376
|
a1i |
|- ( T. -> +oo e. RR* ) |
| 378 |
364
|
ltpnfd |
|- ( T. -> 0 < +oo ) |
| 379 |
362 364 377 378
|
lptioo1 |
|- ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( 0 (,) +oo ) ) ) |
| 380 |
|
incom |
|- ( RR i^i ( 0 (,) +oo ) ) = ( ( 0 (,) +oo ) i^i RR ) |
| 381 |
|
ioossre |
|- ( 0 (,) +oo ) C_ RR |
| 382 |
|
dfss2 |
|- ( ( 0 (,) +oo ) C_ RR <-> ( ( 0 (,) +oo ) i^i RR ) = ( 0 (,) +oo ) ) |
| 383 |
381 382
|
mpbi |
|- ( ( 0 (,) +oo ) i^i RR ) = ( 0 (,) +oo ) |
| 384 |
380 383
|
eqtr2i |
|- ( 0 (,) +oo ) = ( RR i^i ( 0 (,) +oo ) ) |
| 385 |
384
|
fveq2i |
|- ( ( limPt ` ( topGen ` ran (,) ) ) ` ( 0 (,) +oo ) ) = ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( 0 (,) +oo ) ) ) |
| 386 |
379 385
|
eleqtrdi |
|- ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( 0 (,) +oo ) ) ) ) |
| 387 |
|
eqid |
|- ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) = ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) |
| 388 |
|
mnfle |
|- ( -u _pi e. RR* -> -oo <_ -u _pi ) |
| 389 |
161 388
|
ax-mp |
|- -oo <_ -u _pi |
| 390 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ -u _pi ) -> ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) ) |
| 391 |
365 389 390
|
mp2an |
|- ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) |
| 392 |
391
|
a1i |
|- ( T. -> ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) ) |
| 393 |
|
ioosscn |
|- ( -oo (,) 0 ) C_ CC |
| 394 |
392 393
|
sstrdi |
|- ( T. -> ( -u _pi (,) 0 ) C_ CC ) |
| 395 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
| 396 |
387 394 305 395
|
constlimc |
|- ( T. -> -u 1 e. ( ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) limCC 0 ) ) |
| 397 |
|
resabs1 |
|- ( ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) -> ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) = ( F |` ( -u _pi (,) 0 ) ) ) |
| 398 |
391 397
|
ax-mp |
|- ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) = ( F |` ( -u _pi (,) 0 ) ) |
| 399 |
300 398
|
eqtr4i |
|- ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) = ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) |
| 400 |
399
|
oveq1i |
|- ( ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) limCC 0 ) = ( ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) limCC 0 ) |
| 401 |
|
fssres |
|- ( ( F : RR --> CC /\ ( -oo (,) 0 ) C_ RR ) -> ( F |` ( -oo (,) 0 ) ) : ( -oo (,) 0 ) --> CC ) |
| 402 |
209 370 401
|
mp2an |
|- ( F |` ( -oo (,) 0 ) ) : ( -oo (,) 0 ) --> CC |
| 403 |
402
|
a1i |
|- ( T. -> ( F |` ( -oo (,) 0 ) ) : ( -oo (,) 0 ) --> CC ) |
| 404 |
393
|
a1i |
|- ( T. -> ( -oo (,) 0 ) C_ CC ) |
| 405 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) |
| 406 |
|
0le0 |
|- 0 <_ 0 |
| 407 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ 0 e. RR ) -> ( 0 e. ( -u _pi (,] 0 ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ 0 ) ) ) |
| 408 |
161 71 407
|
mp2an |
|- ( 0 e. ( -u _pi (,] 0 ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ 0 ) ) |
| 409 |
71 166 406 408
|
mpbir3an |
|- 0 e. ( -u _pi (,] 0 ) |
| 410 |
360
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 411 |
|
ovex |
|- ( -oo (,] 0 ) e. _V |
| 412 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( -oo (,] 0 ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) e. Top ) |
| 413 |
410 411 412
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) e. Top |
| 414 |
161
|
a1i |
|- ( T. -> -u _pi e. RR* ) |
| 415 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) = ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) |
| 416 |
389
|
a1i |
|- ( T. -> -oo <_ -u _pi ) |
| 417 |
366 414 364 362 415 416 364
|
iocopn |
|- ( T. -> ( -u _pi (,] 0 ) e. ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) ) |
| 418 |
417
|
mptru |
|- ( -u _pi (,] 0 ) e. ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) |
| 419 |
200
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -oo (,] 0 ) ) |
| 420 |
|
iocssre |
|- ( ( -oo e. RR* /\ 0 e. RR ) -> ( -oo (,] 0 ) C_ RR ) |
| 421 |
365 71 420
|
mp2an |
|- ( -oo (,] 0 ) C_ RR |
| 422 |
197
|
elexi |
|- RR e. _V |
| 423 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( -oo (,] 0 ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) |
| 424 |
410 421 422 423
|
mp3an |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) |
| 425 |
419 424
|
eqtri |
|- ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) |
| 426 |
418 425
|
eleqtri |
|- ( -u _pi (,] 0 ) e. ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) |
| 427 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) e. Top /\ ( -u _pi (,] 0 ) e. ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) ` ( -u _pi (,] 0 ) ) = ( -u _pi (,] 0 ) ) |
| 428 |
413 426 427
|
mp2an |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) ` ( -u _pi (,] 0 ) ) = ( -u _pi (,] 0 ) |
| 429 |
|
mnflt0 |
|- -oo < 0 |
| 430 |
|
ioounsn |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ -oo < 0 ) -> ( ( -oo (,) 0 ) u. { 0 } ) = ( -oo (,] 0 ) ) |
| 431 |
365 153 429 430
|
mp3an |
|- ( ( -oo (,) 0 ) u. { 0 } ) = ( -oo (,] 0 ) |
| 432 |
431
|
eqcomi |
|- ( -oo (,] 0 ) = ( ( -oo (,) 0 ) u. { 0 } ) |
| 433 |
432
|
oveq2i |
|- ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) |
| 434 |
433
|
fveq2i |
|- ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) |
| 435 |
|
ioounsn |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ -u _pi < 0 ) -> ( ( -u _pi (,) 0 ) u. { 0 } ) = ( -u _pi (,] 0 ) ) |
| 436 |
161 153 166 435
|
mp3an |
|- ( ( -u _pi (,) 0 ) u. { 0 } ) = ( -u _pi (,] 0 ) |
| 437 |
436
|
eqcomi |
|- ( -u _pi (,] 0 ) = ( ( -u _pi (,) 0 ) u. { 0 } ) |
| 438 |
434 437
|
fveq12i |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) ` ( -u _pi (,] 0 ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) ) |
| 439 |
428 438
|
eqtr3i |
|- ( -u _pi (,] 0 ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) ) |
| 440 |
409 439
|
eleqtri |
|- 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) ) |
| 441 |
440
|
a1i |
|- ( T. -> 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) ) ) |
| 442 |
403 392 404 360 405 441
|
limcres |
|- ( T. -> ( ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) limCC 0 ) = ( ( F |` ( -oo (,) 0 ) ) limCC 0 ) ) |
| 443 |
442
|
mptru |
|- ( ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) limCC 0 ) = ( ( F |` ( -oo (,) 0 ) ) limCC 0 ) |
| 444 |
400 443
|
eqtri |
|- ( ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) limCC 0 ) = ( ( F |` ( -oo (,) 0 ) ) limCC 0 ) |
| 445 |
396 444
|
eleqtrdi |
|- ( T. -> -u 1 e. ( ( F |` ( -oo (,) 0 ) ) limCC 0 ) ) |
| 446 |
|
eqid |
|- ( x e. ( 0 (,) _pi ) |-> 1 ) = ( x e. ( 0 (,) _pi ) |-> 1 ) |
| 447 |
|
ioosscn |
|- ( 0 (,) _pi ) C_ CC |
| 448 |
447
|
a1i |
|- ( T. -> ( 0 (,) _pi ) C_ CC ) |
| 449 |
446 448 203 395
|
constlimc |
|- ( T. -> 1 e. ( ( x e. ( 0 (,) _pi ) |-> 1 ) limCC 0 ) ) |
| 450 |
|
ltpnf |
|- ( _pi e. RR -> _pi < +oo ) |
| 451 |
|
xrltle |
|- ( ( _pi e. RR* /\ +oo e. RR* ) -> ( _pi < +oo -> _pi <_ +oo ) ) |
| 452 |
155 376 451
|
mp2an |
|- ( _pi < +oo -> _pi <_ +oo ) |
| 453 |
120 450 452
|
mp2b |
|- _pi <_ +oo |
| 454 |
|
iooss2 |
|- ( ( +oo e. RR* /\ _pi <_ +oo ) -> ( 0 (,) _pi ) C_ ( 0 (,) +oo ) ) |
| 455 |
376 453 454
|
mp2an |
|- ( 0 (,) _pi ) C_ ( 0 (,) +oo ) |
| 456 |
|
resabs1 |
|- ( ( 0 (,) _pi ) C_ ( 0 (,) +oo ) -> ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) = ( F |` ( 0 (,) _pi ) ) ) |
| 457 |
455 456
|
ax-mp |
|- ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) = ( F |` ( 0 (,) _pi ) ) |
| 458 |
195 457
|
eqtr4i |
|- ( x e. ( 0 (,) _pi ) |-> 1 ) = ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) |
| 459 |
458
|
oveq1i |
|- ( ( x e. ( 0 (,) _pi ) |-> 1 ) limCC 0 ) = ( ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) limCC 0 ) |
| 460 |
|
fssres |
|- ( ( F : RR --> CC /\ ( 0 (,) +oo ) C_ RR ) -> ( F |` ( 0 (,) +oo ) ) : ( 0 (,) +oo ) --> CC ) |
| 461 |
209 381 460
|
mp2an |
|- ( F |` ( 0 (,) +oo ) ) : ( 0 (,) +oo ) --> CC |
| 462 |
461
|
a1i |
|- ( T. -> ( F |` ( 0 (,) +oo ) ) : ( 0 (,) +oo ) --> CC ) |
| 463 |
455
|
a1i |
|- ( T. -> ( 0 (,) _pi ) C_ ( 0 (,) +oo ) ) |
| 464 |
|
ioosscn |
|- ( 0 (,) +oo ) C_ CC |
| 465 |
464
|
a1i |
|- ( T. -> ( 0 (,) +oo ) C_ CC ) |
| 466 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) |
| 467 |
|
elico2 |
|- ( ( 0 e. RR /\ _pi e. RR* ) -> ( 0 e. ( 0 [,) _pi ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < _pi ) ) ) |
| 468 |
71 155 467
|
mp2an |
|- ( 0 e. ( 0 [,) _pi ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < _pi ) ) |
| 469 |
71 406 72 468
|
mpbir3an |
|- 0 e. ( 0 [,) _pi ) |
| 470 |
|
ovex |
|- ( 0 [,) +oo ) e. _V |
| 471 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( 0 [,) +oo ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. Top ) |
| 472 |
410 470 471
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. Top |
| 473 |
155
|
a1i |
|- ( T. -> _pi e. RR* ) |
| 474 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) |
| 475 |
453
|
a1i |
|- ( T. -> _pi <_ +oo ) |
| 476 |
364 473 377 362 474 475
|
icoopn |
|- ( T. -> ( 0 [,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) ) |
| 477 |
476
|
mptru |
|- ( 0 [,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) |
| 478 |
200
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( 0 [,) +oo ) ) |
| 479 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 480 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( 0 [,) +oo ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) |
| 481 |
410 479 422 480
|
mp3an |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
| 482 |
478 481
|
eqtri |
|- ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
| 483 |
477 482
|
eleqtri |
|- ( 0 [,) _pi ) e. ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) |
| 484 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. Top /\ ( 0 [,) _pi ) e. ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ` ( 0 [,) _pi ) ) = ( 0 [,) _pi ) ) |
| 485 |
472 483 484
|
mp2an |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ` ( 0 [,) _pi ) ) = ( 0 [,) _pi ) |
| 486 |
|
0ltpnf |
|- 0 < +oo |
| 487 |
|
snunioo1 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 < +oo ) -> ( ( 0 (,) +oo ) u. { 0 } ) = ( 0 [,) +oo ) ) |
| 488 |
153 376 486 487
|
mp3an |
|- ( ( 0 (,) +oo ) u. { 0 } ) = ( 0 [,) +oo ) |
| 489 |
488
|
eqcomi |
|- ( 0 [,) +oo ) = ( ( 0 (,) +oo ) u. { 0 } ) |
| 490 |
489
|
oveq2i |
|- ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) |
| 491 |
490
|
fveq2i |
|- ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) |
| 492 |
|
snunioo1 |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 < _pi ) -> ( ( 0 (,) _pi ) u. { 0 } ) = ( 0 [,) _pi ) ) |
| 493 |
153 155 72 492
|
mp3an |
|- ( ( 0 (,) _pi ) u. { 0 } ) = ( 0 [,) _pi ) |
| 494 |
493
|
eqcomi |
|- ( 0 [,) _pi ) = ( ( 0 (,) _pi ) u. { 0 } ) |
| 495 |
491 494
|
fveq12i |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ` ( 0 [,) _pi ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) ) |
| 496 |
485 495
|
eqtr3i |
|- ( 0 [,) _pi ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) ) |
| 497 |
469 496
|
eleqtri |
|- 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) ) |
| 498 |
497
|
a1i |
|- ( T. -> 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) ) ) |
| 499 |
462 463 465 360 466 498
|
limcres |
|- ( T. -> ( ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) limCC 0 ) = ( ( F |` ( 0 (,) +oo ) ) limCC 0 ) ) |
| 500 |
499
|
mptru |
|- ( ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) limCC 0 ) = ( ( F |` ( 0 (,) +oo ) ) limCC 0 ) |
| 501 |
459 500
|
eqtri |
|- ( ( x e. ( 0 (,) _pi ) |-> 1 ) limCC 0 ) = ( ( F |` ( 0 (,) +oo ) ) limCC 0 ) |
| 502 |
449 501
|
eleqtrdi |
|- ( T. -> 1 e. ( ( F |` ( 0 (,) +oo ) ) limCC 0 ) ) |
| 503 |
|
neg1lt0 |
|- -u 1 < 0 |
| 504 |
109 71 108
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
| 505 |
503 38 504
|
mp2an |
|- -u 1 < 1 |
| 506 |
109 505
|
ltneii |
|- -u 1 =/= 1 |
| 507 |
506
|
a1i |
|- ( T. -> -u 1 =/= 1 ) |
| 508 |
360 361 362 363 364 375 386 445 502 507
|
jumpncnp |
|- ( T. -> -. F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 509 |
508
|
mptru |
|- -. F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) |
| 510 |
207
|
a1i |
|- ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> RR C_ CC ) |
| 511 |
209
|
a1i |
|- ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> F : RR --> CC ) |
| 512 |
206
|
a1i |
|- ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> RR C_ RR ) |
| 513 |
|
inss2 |
|- ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) |
| 514 |
221 513
|
eqsstri |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ dom ( RR _D F ) |
| 515 |
514
|
sseli |
|- ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> 0 e. dom ( RR _D F ) ) |
| 516 |
200 360
|
dvcnp2 |
|- ( ( ( RR C_ CC /\ F : RR --> CC /\ RR C_ RR ) /\ 0 e. dom ( RR _D F ) ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 517 |
510 511 512 515 516
|
syl31anc |
|- ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) ) |
| 518 |
509 517
|
mto |
|- -. 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 519 |
518
|
a1i |
|- ( x = 0 -> -. 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 520 |
359 519
|
eqneltrd |
|- ( x = 0 -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 521 |
520
|
necon2ai |
|- ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x =/= 0 ) |
| 522 |
521
|
adantr |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x =/= 0 ) |
| 523 |
355 356 358 522
|
leneltd |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> 0 < x ) |
| 524 |
345 165
|
sylan |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ 0 < x ) -> x e. ( 0 (,) _pi ) ) |
| 525 |
|
elun2 |
|- ( x e. ( 0 (,) _pi ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) ) |
| 526 |
524 525
|
syl |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ 0 < x ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) ) |
| 527 |
354 523 526
|
syl2anc |
|- ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) ) |
| 528 |
353 527
|
pm2.61dan |
|- ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) ) |
| 529 |
|
ovex |
|- ( -u _pi (,) 0 ) e. _V |
| 530 |
|
ovex |
|- ( 0 (,) _pi ) e. _V |
| 531 |
529 530
|
unipr |
|- U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } = ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) |
| 532 |
528 531
|
eleqtrrdi |
|- ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } ) |
| 533 |
532
|
ssriv |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } |
| 534 |
533
|
a1i |
|- ( T. -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } ) |
| 535 |
|
ineq2 |
|- ( x = ( -u _pi (,) 0 ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) ) |
| 536 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 537 |
|
ovex |
|- ( RR _D F ) e. _V |
| 538 |
537
|
resex |
|- ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V |
| 539 |
538
|
dmex |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V |
| 540 |
536 539
|
pm3.2i |
|- ( ( topGen ` ran (,) ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V ) |
| 541 |
319
|
ssriv |
|- ( -u _pi (,) 0 ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 542 |
|
ssid |
|- ( -u _pi (,) 0 ) C_ ( -u _pi (,) 0 ) |
| 543 |
302 541 542
|
3pm3.2i |
|- ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) /\ ( -u _pi (,) 0 ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( -u _pi (,) 0 ) C_ ( -u _pi (,) 0 ) ) |
| 544 |
|
restopnb |
|- ( ( ( ( topGen ` ran (,) ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V ) /\ ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) /\ ( -u _pi (,) 0 ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( -u _pi (,) 0 ) C_ ( -u _pi (,) 0 ) ) ) -> ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) <-> ( -u _pi (,) 0 ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) ) |
| 545 |
540 543 544
|
mp2an |
|- ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) <-> ( -u _pi (,) 0 ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 546 |
302 545
|
mpbi |
|- ( -u _pi (,) 0 ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 547 |
|
inss2 |
|- ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) C_ ( -u _pi (,) 0 ) |
| 548 |
541 542
|
ssini |
|- ( -u _pi (,) 0 ) C_ ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) |
| 549 |
547 548
|
eqssi |
|- ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) = ( -u _pi (,) 0 ) |
| 550 |
200
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 551 |
332 344
|
sstri |
|- dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ RR |
| 552 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 553 |
410 551 422 552
|
mp3an |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 554 |
550 553
|
eqtr2i |
|- ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 555 |
546 549 554
|
3eltr4i |
|- ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 556 |
535 555
|
eqeltrdi |
|- ( x = ( -u _pi (,) 0 ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 557 |
556
|
adantl |
|- ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ x = ( -u _pi (,) 0 ) ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 558 |
|
neqne |
|- ( -. x = ( -u _pi (,) 0 ) -> x =/= ( -u _pi (,) 0 ) ) |
| 559 |
|
elprn1 |
|- ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ x =/= ( -u _pi (,) 0 ) ) -> x = ( 0 (,) _pi ) ) |
| 560 |
558 559
|
sylan2 |
|- ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ -. x = ( -u _pi (,) 0 ) ) -> x = ( 0 (,) _pi ) ) |
| 561 |
|
ineq2 |
|- ( x = ( 0 (,) _pi ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) ) |
| 562 |
222
|
ssriv |
|- ( 0 (,) _pi ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 563 |
|
ssid |
|- ( 0 (,) _pi ) C_ ( 0 (,) _pi ) |
| 564 |
199 562 563
|
3pm3.2i |
|- ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) /\ ( 0 (,) _pi ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( 0 (,) _pi ) C_ ( 0 (,) _pi ) ) |
| 565 |
|
restopnb |
|- ( ( ( ( topGen ` ran (,) ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V ) /\ ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) /\ ( 0 (,) _pi ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( 0 (,) _pi ) C_ ( 0 (,) _pi ) ) ) -> ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) <-> ( 0 (,) _pi ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) ) |
| 566 |
540 564 565
|
mp2an |
|- ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) <-> ( 0 (,) _pi ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 567 |
199 566
|
mpbi |
|- ( 0 (,) _pi ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 568 |
|
inss2 |
|- ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) C_ ( 0 (,) _pi ) |
| 569 |
562 563
|
ssini |
|- ( 0 (,) _pi ) C_ ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) |
| 570 |
568 569
|
eqssi |
|- ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) = ( 0 (,) _pi ) |
| 571 |
567 570 554
|
3eltr4i |
|- ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 572 |
561 571
|
eqeltrdi |
|- ( x = ( 0 (,) _pi ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 573 |
560 572
|
syl |
|- ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ -. x = ( -u _pi (,) 0 ) ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 574 |
557 573
|
pm2.61dan |
|- ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 575 |
574
|
adantl |
|- ( ( T. /\ x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 576 |
|
ssid |
|- CC C_ CC |
| 577 |
576
|
a1i |
|- ( T. -> CC C_ CC ) |
| 578 |
394 395 577
|
constcncfg |
|- ( T. -> ( x e. ( -u _pi (,) 0 ) |-> 0 ) e. ( ( -u _pi (,) 0 ) -cn-> CC ) ) |
| 579 |
578
|
mptru |
|- ( x e. ( -u _pi (,) 0 ) |-> 0 ) e. ( ( -u _pi (,) 0 ) -cn-> CC ) |
| 580 |
579
|
a1i |
|- ( x = ( -u _pi (,) 0 ) -> ( x e. ( -u _pi (,) 0 ) |-> 0 ) e. ( ( -u _pi (,) 0 ) -cn-> CC ) ) |
| 581 |
|
reseq2 |
|- ( x = ( -u _pi (,) 0 ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) ) |
| 582 |
|
resabs1 |
|- ( ( -u _pi (,) 0 ) C_ ( -u _pi (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) ) |
| 583 |
239 582
|
ax-mp |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) |
| 584 |
583 310
|
eqtr4i |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) |
| 585 |
581 584
|
eqtrdi |
|- ( x = ( -u _pi (,) 0 ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) ) |
| 586 |
535 549
|
eqtrdi |
|- ( x = ( -u _pi (,) 0 ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( -u _pi (,) 0 ) ) |
| 587 |
586
|
oveq1d |
|- ( x = ( -u _pi (,) 0 ) -> ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) = ( ( -u _pi (,) 0 ) -cn-> CC ) ) |
| 588 |
580 585 587
|
3eltr4d |
|- ( x = ( -u _pi (,) 0 ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) ) |
| 589 |
588
|
adantl |
|- ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ x = ( -u _pi (,) 0 ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) ) |
| 590 |
448 395 577
|
constcncfg |
|- ( T. -> ( x e. ( 0 (,) _pi ) |-> 0 ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 591 |
590
|
mptru |
|- ( x e. ( 0 (,) _pi ) |-> 0 ) e. ( ( 0 (,) _pi ) -cn-> CC ) |
| 592 |
591
|
a1i |
|- ( x = ( 0 (,) _pi ) -> ( x e. ( 0 (,) _pi ) |-> 0 ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 593 |
|
reseq2 |
|- ( x = ( 0 (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) ) |
| 594 |
|
resabs1 |
|- ( ( 0 (,) _pi ) C_ ( -u _pi (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) ) |
| 595 |
169 594
|
ax-mp |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) |
| 596 |
595 212
|
eqtr4i |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> 0 ) |
| 597 |
593 596
|
eqtrdi |
|- ( x = ( 0 (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( x e. ( 0 (,) _pi ) |-> 0 ) ) |
| 598 |
561 570
|
eqtrdi |
|- ( x = ( 0 (,) _pi ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( 0 (,) _pi ) ) |
| 599 |
598
|
oveq1d |
|- ( x = ( 0 (,) _pi ) -> ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) = ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 600 |
592 597 599
|
3eltr4d |
|- ( x = ( 0 (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) ) |
| 601 |
560 600
|
syl |
|- ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ -. x = ( -u _pi (,) 0 ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) ) |
| 602 |
589 601
|
pm2.61dan |
|- ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) ) |
| 603 |
602
|
adantl |
|- ( ( T. /\ x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) ) |
| 604 |
335 341 534 575 603
|
cncfuni |
|- ( T. -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -cn-> CC ) ) |
| 605 |
604
|
mptru |
|- ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -cn-> CC ) |
| 606 |
|
oveq1 |
|- ( x = -u _pi -> ( x (,) +oo ) = ( -u _pi (,) +oo ) ) |
| 607 |
606
|
reseq2d |
|- ( x = -u _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) +oo ) ) ) |
| 608 |
|
iooss2 |
|- ( ( +oo e. RR* /\ _pi <_ +oo ) -> ( -u _pi (,) _pi ) C_ ( -u _pi (,) +oo ) ) |
| 609 |
376 453 608
|
mp2an |
|- ( -u _pi (,) _pi ) C_ ( -u _pi (,) +oo ) |
| 610 |
|
resabs2 |
|- ( ( -u _pi (,) _pi ) C_ ( -u _pi (,) +oo ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) +oo ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 611 |
609 610
|
ax-mp |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) +oo ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 612 |
607 611
|
eqtrdi |
|- ( x = -u _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 613 |
|
id |
|- ( x = -u _pi -> x = -u _pi ) |
| 614 |
612 613
|
oveq12d |
|- ( x = -u _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) ) |
| 615 |
253
|
a1i |
|- ( T. -> -u _pi e. CC ) |
| 616 |
312 394 395 615
|
constlimc |
|- ( T. -> 0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) ) |
| 617 |
616
|
mptru |
|- 0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) |
| 618 |
310
|
oveq1i |
|- ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) limCC -u _pi ) |
| 619 |
336
|
a1i |
|- ( T. -> ( RR _D F ) : dom ( RR _D F ) --> CC ) |
| 620 |
160
|
a1i |
|- ( T. -> -u _pi e. RR ) |
| 621 |
153
|
a1i |
|- ( T. -> 0 e. RR* ) |
| 622 |
166
|
a1i |
|- ( T. -> -u _pi < 0 ) |
| 623 |
316
|
a1i |
|- ( T. -> ( -u _pi (,) 0 ) C_ dom ( RR _D F ) ) |
| 624 |
237
|
a1i |
|- ( T. -> 0 <_ _pi ) |
| 625 |
619 620 621 622 623 473 624
|
limcresioolb |
|- ( T. -> ( ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) ) |
| 626 |
625
|
mptru |
|- ( ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) |
| 627 |
618 626
|
eqtri |
|- ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) |
| 628 |
617 627
|
eleqtri |
|- 0 e. ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) |
| 629 |
628
|
ne0ii |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) =/= (/) |
| 630 |
629
|
a1i |
|- ( x = -u _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) =/= (/) ) |
| 631 |
614 630
|
eqnetrd |
|- ( x = -u _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 632 |
631
|
adantl |
|- ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ x = -u _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 633 |
|
eldifi |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. ( -u _pi [,) _pi ) ) |
| 634 |
161
|
a1i |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi e. RR* ) |
| 635 |
155
|
a1i |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> _pi e. RR* ) |
| 636 |
|
icossre |
|- ( ( -u _pi e. RR /\ _pi e. RR* ) -> ( -u _pi [,) _pi ) C_ RR ) |
| 637 |
160 155 636
|
mp2an |
|- ( -u _pi [,) _pi ) C_ RR |
| 638 |
637
|
sseli |
|- ( x e. ( -u _pi [,) _pi ) -> x e. RR ) |
| 639 |
638
|
adantr |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x e. RR ) |
| 640 |
160
|
a1i |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi e. RR ) |
| 641 |
|
icogelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi [,) _pi ) ) -> -u _pi <_ x ) |
| 642 |
161 155 641
|
mp3an12 |
|- ( x e. ( -u _pi [,) _pi ) -> -u _pi <_ x ) |
| 643 |
642
|
adantr |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi <_ x ) |
| 644 |
|
neqne |
|- ( -. x = -u _pi -> x =/= -u _pi ) |
| 645 |
644
|
adantl |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x =/= -u _pi ) |
| 646 |
640 639 643 645
|
leneltd |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi < x ) |
| 647 |
|
icoltub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi [,) _pi ) ) -> x < _pi ) |
| 648 |
161 155 647
|
mp3an12 |
|- ( x e. ( -u _pi [,) _pi ) -> x < _pi ) |
| 649 |
648
|
adantr |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x < _pi ) |
| 650 |
634 635 639 646 649
|
eliood |
|- ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x e. ( -u _pi (,) _pi ) ) |
| 651 |
633 650
|
sylan |
|- ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> x e. ( -u _pi (,) _pi ) ) |
| 652 |
|
eldifn |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 653 |
652
|
adantr |
|- ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 654 |
651 653
|
eldifd |
|- ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 655 |
|
oveq1 |
|- ( x = 0 -> ( x (,) +oo ) = ( 0 (,) +oo ) ) |
| 656 |
655
|
reseq2d |
|- ( x = 0 -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) ) |
| 657 |
656 359
|
oveq12d |
|- ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) ) |
| 658 |
214 448 395 395
|
constlimc |
|- ( T. -> 0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC 0 ) ) |
| 659 |
658
|
mptru |
|- 0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC 0 ) |
| 660 |
|
resres |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) ) |
| 661 |
|
iooin |
|- ( ( ( -u _pi e. RR* /\ _pi e. RR* ) /\ ( 0 e. RR* /\ +oo e. RR* ) ) -> ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) = ( if ( -u _pi <_ 0 , 0 , -u _pi ) (,) if ( _pi <_ +oo , _pi , +oo ) ) ) |
| 662 |
161 155 153 376 661
|
mp4an |
|- ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) = ( if ( -u _pi <_ 0 , 0 , -u _pi ) (,) if ( _pi <_ +oo , _pi , +oo ) ) |
| 663 |
167
|
iftruei |
|- if ( -u _pi <_ 0 , 0 , -u _pi ) = 0 |
| 664 |
453
|
iftruei |
|- if ( _pi <_ +oo , _pi , +oo ) = _pi |
| 665 |
663 664
|
oveq12i |
|- ( if ( -u _pi <_ 0 , 0 , -u _pi ) (,) if ( _pi <_ +oo , _pi , +oo ) ) = ( 0 (,) _pi ) |
| 666 |
662 665
|
eqtri |
|- ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) = ( 0 (,) _pi ) |
| 667 |
666
|
reseq2i |
|- ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) |
| 668 |
212
|
eqcomi |
|- ( ( RR _D F ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> 0 ) |
| 669 |
660 667 668
|
3eqtrri |
|- ( x e. ( 0 (,) _pi ) |-> 0 ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) |
| 670 |
669
|
oveq1i |
|- ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC 0 ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) |
| 671 |
659 670
|
eleqtri |
|- 0 e. ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) |
| 672 |
671
|
ne0ii |
|- ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) =/= (/) |
| 673 |
672
|
a1i |
|- ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) =/= (/) ) |
| 674 |
657 673
|
eqnetrd |
|- ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 675 |
654 325 674
|
3syl |
|- ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 676 |
632 675
|
pm2.61dan |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 677 |
|
oveq2 |
|- ( x = _pi -> ( -oo (,) x ) = ( -oo (,) _pi ) ) |
| 678 |
677
|
reseq2d |
|- ( x = _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) ) |
| 679 |
|
id |
|- ( x = _pi -> x = _pi ) |
| 680 |
678 679
|
oveq12d |
|- ( x = _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) limCC _pi ) ) |
| 681 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ -u _pi ) -> ( -u _pi (,) _pi ) C_ ( -oo (,) _pi ) ) |
| 682 |
365 389 681
|
mp2an |
|- ( -u _pi (,) _pi ) C_ ( -oo (,) _pi ) |
| 683 |
|
resabs2 |
|- ( ( -u _pi (,) _pi ) C_ ( -oo (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 684 |
682 683
|
ax-mp |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 685 |
684
|
oveq1i |
|- ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) |
| 686 |
680 685
|
eqtrdi |
|- ( x = _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) ) |
| 687 |
214 448 395 57
|
constlimc |
|- ( T. -> 0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) ) |
| 688 |
687
|
mptru |
|- 0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) |
| 689 |
212
|
oveq1i |
|- ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) = ( ( ( RR _D F ) |` ( 0 (,) _pi ) ) limCC _pi ) |
| 690 |
120
|
a1i |
|- ( T. -> _pi e. RR ) |
| 691 |
72
|
a1i |
|- ( T. -> 0 < _pi ) |
| 692 |
218
|
a1i |
|- ( T. -> ( 0 (,) _pi ) C_ dom ( RR _D F ) ) |
| 693 |
167
|
a1i |
|- ( T. -> -u _pi <_ 0 ) |
| 694 |
619 621 690 691 692 414 693
|
limcresiooub |
|- ( T. -> ( ( ( RR _D F ) |` ( 0 (,) _pi ) ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) ) |
| 695 |
694
|
mptru |
|- ( ( ( RR _D F ) |` ( 0 (,) _pi ) ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) |
| 696 |
689 695
|
eqtri |
|- ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) |
| 697 |
688 696
|
eleqtri |
|- 0 e. ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) |
| 698 |
697
|
ne0ii |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) =/= (/) |
| 699 |
698
|
a1i |
|- ( x = _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) =/= (/) ) |
| 700 |
686 699
|
eqnetrd |
|- ( x = _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 701 |
700
|
adantl |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ x = _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 702 |
161
|
a1i |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> -u _pi e. RR* ) |
| 703 |
155
|
a1i |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> _pi e. RR* ) |
| 704 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
| 705 |
|
eldifi |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. ( -u _pi (,] _pi ) ) |
| 706 |
704 705
|
sselid |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. RR ) |
| 707 |
706
|
adantr |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x e. RR ) |
| 708 |
161
|
a1i |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -u _pi e. RR* ) |
| 709 |
155
|
a1i |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> _pi e. RR* ) |
| 710 |
|
iocgtlb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,] _pi ) ) -> -u _pi < x ) |
| 711 |
708 709 705 710
|
syl3anc |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -u _pi < x ) |
| 712 |
711
|
adantr |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> -u _pi < x ) |
| 713 |
120
|
a1i |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> _pi e. RR ) |
| 714 |
|
iocleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,] _pi ) ) -> x <_ _pi ) |
| 715 |
708 709 705 714
|
syl3anc |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x <_ _pi ) |
| 716 |
715
|
adantr |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x <_ _pi ) |
| 717 |
|
id |
|- ( _pi = x -> _pi = x ) |
| 718 |
717
|
eqcomd |
|- ( _pi = x -> x = _pi ) |
| 719 |
718
|
necon3bi |
|- ( -. x = _pi -> _pi =/= x ) |
| 720 |
719
|
adantl |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> _pi =/= x ) |
| 721 |
707 713 716 720
|
leneltd |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x < _pi ) |
| 722 |
702 703 707 712 721
|
eliood |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x e. ( -u _pi (,) _pi ) ) |
| 723 |
|
eldifn |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 724 |
723
|
adantr |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
| 725 |
722 724
|
eldifd |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) |
| 726 |
|
oveq2 |
|- ( x = 0 -> ( -oo (,) x ) = ( -oo (,) 0 ) ) |
| 727 |
726
|
reseq2d |
|- ( x = 0 -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) ) |
| 728 |
727 359
|
oveq12d |
|- ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) ) |
| 729 |
312 394 395 395
|
constlimc |
|- ( T. -> 0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC 0 ) ) |
| 730 |
729
|
mptru |
|- 0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC 0 ) |
| 731 |
|
resres |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) ) |
| 732 |
|
iooin |
|- ( ( ( -u _pi e. RR* /\ _pi e. RR* ) /\ ( -oo e. RR* /\ 0 e. RR* ) ) -> ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) = ( if ( -u _pi <_ -oo , -oo , -u _pi ) (,) if ( _pi <_ 0 , _pi , 0 ) ) ) |
| 733 |
161 155 365 153 732
|
mp4an |
|- ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) = ( if ( -u _pi <_ -oo , -oo , -u _pi ) (,) if ( _pi <_ 0 , _pi , 0 ) ) |
| 734 |
|
mnflt |
|- ( -u _pi e. RR -> -oo < -u _pi ) |
| 735 |
160 734
|
ax-mp |
|- -oo < -u _pi |
| 736 |
|
xrltnle |
|- ( ( -oo e. RR* /\ -u _pi e. RR* ) -> ( -oo < -u _pi <-> -. -u _pi <_ -oo ) ) |
| 737 |
365 161 736
|
mp2an |
|- ( -oo < -u _pi <-> -. -u _pi <_ -oo ) |
| 738 |
735 737
|
mpbi |
|- -. -u _pi <_ -oo |
| 739 |
738
|
iffalsei |
|- if ( -u _pi <_ -oo , -oo , -u _pi ) = -u _pi |
| 740 |
|
xrltnle |
|- ( ( 0 e. RR* /\ _pi e. RR* ) -> ( 0 < _pi <-> -. _pi <_ 0 ) ) |
| 741 |
153 155 740
|
mp2an |
|- ( 0 < _pi <-> -. _pi <_ 0 ) |
| 742 |
72 741
|
mpbi |
|- -. _pi <_ 0 |
| 743 |
742
|
iffalsei |
|- if ( _pi <_ 0 , _pi , 0 ) = 0 |
| 744 |
739 743
|
oveq12i |
|- ( if ( -u _pi <_ -oo , -oo , -u _pi ) (,) if ( _pi <_ 0 , _pi , 0 ) ) = ( -u _pi (,) 0 ) |
| 745 |
733 744
|
eqtri |
|- ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) = ( -u _pi (,) 0 ) |
| 746 |
745
|
reseq2i |
|- ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) |
| 747 |
310
|
eqcomi |
|- ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) |
| 748 |
731 746 747
|
3eqtrri |
|- ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) |
| 749 |
748
|
oveq1i |
|- ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC 0 ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) |
| 750 |
730 749
|
eleqtri |
|- 0 e. ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) |
| 751 |
750
|
ne0ii |
|- ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) =/= (/) |
| 752 |
751
|
a1i |
|- ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) =/= (/) ) |
| 753 |
728 752
|
eqnetrd |
|- ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 754 |
725 325 753
|
3syl |
|- ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 755 |
701 754
|
pm2.61dan |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 756 |
|
eqid |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) |
| 757 |
|
ioosscn |
|- ( ( X - ( X mod T ) ) (,) X ) C_ CC |
| 758 |
757
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( X - ( X mod T ) ) (,) X ) C_ CC ) |
| 759 |
|
1cnd |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> 1 e. CC ) |
| 760 |
27
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> X e. CC ) |
| 761 |
756 758 759 760
|
constlimc |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> 1 e. ( ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) limCC X ) ) |
| 762 |
|
ioossioc |
|- ( 0 (,) _pi ) C_ ( 0 (,] _pi ) |
| 763 |
762
|
sseli |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) e. ( 0 (,] _pi ) ) |
| 764 |
763
|
iftrued |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 ) |
| 765 |
209
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> F : RR --> CC ) |
| 766 |
|
modcl |
|- ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) e. RR ) |
| 767 |
3 135 766
|
mp2an |
|- ( X mod T ) e. RR |
| 768 |
3 767
|
resubcli |
|- ( X - ( X mod T ) ) e. RR |
| 769 |
768
|
rexri |
|- ( X - ( X mod T ) ) e. RR* |
| 770 |
769
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X - ( X mod T ) ) e. RR* ) |
| 771 |
3
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> X e. RR ) |
| 772 |
|
elioore |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) e. RR ) |
| 773 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 (,) _pi ) ) -> 0 < ( X mod T ) ) |
| 774 |
153 155 773
|
mp3an12 |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> 0 < ( X mod T ) ) |
| 775 |
772 774
|
elrpd |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) e. RR+ ) |
| 776 |
771 775
|
ltsubrpd |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X - ( X mod T ) ) < X ) |
| 777 |
|
ioossre |
|- ( ( X - ( X mod T ) ) (,) X ) C_ RR |
| 778 |
777
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( X - ( X mod T ) ) (,) X ) C_ RR ) |
| 779 |
365
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> -oo e. RR* ) |
| 780 |
|
mnflt |
|- ( ( X - ( X mod T ) ) e. RR -> -oo < ( X - ( X mod T ) ) ) |
| 781 |
|
xrltle |
|- ( ( -oo e. RR* /\ ( X - ( X mod T ) ) e. RR* ) -> ( -oo < ( X - ( X mod T ) ) -> -oo <_ ( X - ( X mod T ) ) ) ) |
| 782 |
365 769 781
|
mp2an |
|- ( -oo < ( X - ( X mod T ) ) -> -oo <_ ( X - ( X mod T ) ) ) |
| 783 |
768 780 782
|
mp2b |
|- -oo <_ ( X - ( X mod T ) ) |
| 784 |
783
|
a1i |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> -oo <_ ( X - ( X mod T ) ) ) |
| 785 |
765 770 771 776 778 779 784
|
limcresiooub |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( F |` ( ( X - ( X mod T ) ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 786 |
|
iooltub |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 (,) _pi ) ) -> ( X mod T ) < _pi ) |
| 787 |
153 155 786
|
mp3an12 |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) < _pi ) |
| 788 |
209
|
a1i |
|- ( ( X mod T ) < _pi -> F : RR --> CC ) |
| 789 |
777
|
a1i |
|- ( ( X mod T ) < _pi -> ( ( X - ( X mod T ) ) (,) X ) C_ RR ) |
| 790 |
788 789
|
feqresmpt |
|- ( ( X mod T ) < _pi -> ( F |` ( ( X - ( X mod T ) ) (,) X ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) ) |
| 791 |
|
elioore |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) -> x e. RR ) |
| 792 |
791 110 147
|
sylancl |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 793 |
792
|
adantl |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 794 |
791
|
adantl |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> x e. RR ) |
| 795 |
135
|
a1i |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> T e. RR+ ) |
| 796 |
794 795
|
modcld |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( x mod T ) e. RR ) |
| 797 |
767
|
a1i |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( X mod T ) e. RR ) |
| 798 |
120
|
a1i |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> _pi e. RR ) |
| 799 |
3
|
a1i |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) -> X e. RR ) |
| 800 |
135
|
a1i |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) -> T e. RR+ ) |
| 801 |
|
ioossico |
|- ( ( X - ( X mod T ) ) (,) X ) C_ ( ( X - ( X mod T ) ) [,) X ) |
| 802 |
801
|
sseli |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) -> x e. ( ( X - ( X mod T ) ) [,) X ) ) |
| 803 |
799 800 802
|
ltmod |
|- ( x e. ( ( X - ( X mod T ) ) (,) X ) -> ( x mod T ) < ( X mod T ) ) |
| 804 |
803
|
adantl |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( x mod T ) < ( X mod T ) ) |
| 805 |
|
simpl |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( X mod T ) < _pi ) |
| 806 |
796 797 798 804 805
|
lttrd |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( x mod T ) < _pi ) |
| 807 |
806
|
iftrued |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 808 |
793 807
|
eqtrd |
|- ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = 1 ) |
| 809 |
808
|
mpteq2dva |
|- ( ( X mod T ) < _pi -> ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) ) |
| 810 |
790 809
|
eqtrd |
|- ( ( X mod T ) < _pi -> ( F |` ( ( X - ( X mod T ) ) (,) X ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) ) |
| 811 |
787 810
|
syl |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( F |` ( ( X - ( X mod T ) ) (,) X ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) ) |
| 812 |
811
|
oveq1d |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( F |` ( ( X - ( X mod T ) ) (,) X ) ) limCC X ) = ( ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) limCC X ) ) |
| 813 |
785 812
|
eqtr3d |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) limCC X ) ) |
| 814 |
761 764 813
|
3eltr4d |
|- ( ( X mod T ) e. ( 0 (,) _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 815 |
|
eqid |
|- ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) = ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) |
| 816 |
|
ioossre |
|- ( ( X - _pi ) (,) X ) C_ RR |
| 817 |
816
|
a1i |
|- ( T. -> ( ( X - _pi ) (,) X ) C_ RR ) |
| 818 |
817 207
|
sstrdi |
|- ( T. -> ( ( X - _pi ) (,) X ) C_ CC ) |
| 819 |
27
|
a1i |
|- ( T. -> X e. CC ) |
| 820 |
815 818 305 819
|
constlimc |
|- ( T. -> -u 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) ) |
| 821 |
820
|
mptru |
|- -u 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) |
| 822 |
821
|
a1i |
|- ( ( X mod T ) = 0 -> -u 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) ) |
| 823 |
|
id |
|- ( ( X mod T ) = 0 -> ( X mod T ) = 0 ) |
| 824 |
|
lbioc |
|- -. 0 e. ( 0 (,] _pi ) |
| 825 |
824
|
a1i |
|- ( ( X mod T ) = 0 -> -. 0 e. ( 0 (,] _pi ) ) |
| 826 |
823 825
|
eqneltrd |
|- ( ( X mod T ) = 0 -> -. ( X mod T ) e. ( 0 (,] _pi ) ) |
| 827 |
826
|
iffalsed |
|- ( ( X mod T ) = 0 -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = -u 1 ) |
| 828 |
209
|
a1i |
|- ( ( X mod T ) = 0 -> F : RR --> CC ) |
| 829 |
816
|
a1i |
|- ( ( X mod T ) = 0 -> ( ( X - _pi ) (,) X ) C_ RR ) |
| 830 |
828 829
|
feqresmpt |
|- ( ( X mod T ) = 0 -> ( F |` ( ( X - _pi ) (,) X ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) ) |
| 831 |
829
|
sselda |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> x e. RR ) |
| 832 |
831 110 147
|
sylancl |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 833 |
120
|
a1i |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi e. RR ) |
| 834 |
135
|
a1i |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> T e. RR+ ) |
| 835 |
831 834
|
modcld |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) e. RR ) |
| 836 |
3 120
|
resubcli |
|- ( X - _pi ) e. RR |
| 837 |
836
|
a1i |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( X - _pi ) e. RR ) |
| 838 |
122
|
a1i |
|- ( x e. ( ( X - _pi ) (,) X ) -> T e. RR ) |
| 839 |
837 838
|
readdcld |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( X - _pi ) + T ) e. RR ) |
| 840 |
|
elioore |
|- ( x e. ( ( X - _pi ) (,) X ) -> x e. RR ) |
| 841 |
840 838
|
readdcld |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( x + T ) e. RR ) |
| 842 |
3
|
a1i |
|- ( x e. ( ( X - _pi ) (,) X ) -> X e. RR ) |
| 843 |
836
|
rexri |
|- ( X - _pi ) e. RR* |
| 844 |
843
|
a1i |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( X - _pi ) e. RR* ) |
| 845 |
842
|
rexrd |
|- ( x e. ( ( X - _pi ) (,) X ) -> X e. RR* ) |
| 846 |
|
id |
|- ( x e. ( ( X - _pi ) (,) X ) -> x e. ( ( X - _pi ) (,) X ) ) |
| 847 |
|
ioogtlb |
|- ( ( ( X - _pi ) e. RR* /\ X e. RR* /\ x e. ( ( X - _pi ) (,) X ) ) -> ( X - _pi ) < x ) |
| 848 |
844 845 846 847
|
syl3anc |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( X - _pi ) < x ) |
| 849 |
837 840 838 848
|
ltadd1dd |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( X - _pi ) + T ) < ( x + T ) ) |
| 850 |
839 841 842 849
|
ltsub1dd |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( X - _pi ) + T ) - X ) < ( ( x + T ) - X ) ) |
| 851 |
850
|
adantl |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( X - _pi ) + T ) - X ) < ( ( x + T ) - X ) ) |
| 852 |
251
|
oveq2i |
|- ( ( X - _pi ) + T ) = ( ( X - _pi ) + ( _pi + _pi ) ) |
| 853 |
56 56
|
addcli |
|- ( _pi + _pi ) e. CC |
| 854 |
|
subadd23 |
|- ( ( X e. CC /\ _pi e. CC /\ ( _pi + _pi ) e. CC ) -> ( ( X - _pi ) + ( _pi + _pi ) ) = ( X + ( ( _pi + _pi ) - _pi ) ) ) |
| 855 |
27 56 853 854
|
mp3an |
|- ( ( X - _pi ) + ( _pi + _pi ) ) = ( X + ( ( _pi + _pi ) - _pi ) ) |
| 856 |
56 56
|
pncan3oi |
|- ( ( _pi + _pi ) - _pi ) = _pi |
| 857 |
856
|
oveq2i |
|- ( X + ( ( _pi + _pi ) - _pi ) ) = ( X + _pi ) |
| 858 |
852 855 857
|
3eqtri |
|- ( ( X - _pi ) + T ) = ( X + _pi ) |
| 859 |
858
|
oveq1i |
|- ( ( ( X - _pi ) + T ) - X ) = ( ( X + _pi ) - X ) |
| 860 |
|
pncan2 |
|- ( ( X e. CC /\ _pi e. CC ) -> ( ( X + _pi ) - X ) = _pi ) |
| 861 |
27 56 860
|
mp2an |
|- ( ( X + _pi ) - X ) = _pi |
| 862 |
859 861
|
eqtr2i |
|- _pi = ( ( ( X - _pi ) + T ) - X ) |
| 863 |
862
|
a1i |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi = ( ( ( X - _pi ) + T ) - X ) ) |
| 864 |
841 842
|
resubcld |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) e. RR ) |
| 865 |
|
modabs2 |
|- ( ( ( ( x + T ) - X ) e. RR /\ T e. RR+ ) -> ( ( ( ( x + T ) - X ) mod T ) mod T ) = ( ( ( x + T ) - X ) mod T ) ) |
| 866 |
864 135 865
|
sylancl |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( x + T ) - X ) mod T ) mod T ) = ( ( ( x + T ) - X ) mod T ) ) |
| 867 |
135
|
a1i |
|- ( x e. ( ( X - _pi ) (,) X ) -> T e. RR+ ) |
| 868 |
|
0red |
|- ( x e. ( ( X - _pi ) (,) X ) -> 0 e. RR ) |
| 869 |
839 842
|
resubcld |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( X - _pi ) + T ) - X ) e. RR ) |
| 870 |
72 862
|
breqtri |
|- 0 < ( ( ( X - _pi ) + T ) - X ) |
| 871 |
870
|
a1i |
|- ( x e. ( ( X - _pi ) (,) X ) -> 0 < ( ( ( X - _pi ) + T ) - X ) ) |
| 872 |
868 869 864 871 850
|
lttrd |
|- ( x e. ( ( X - _pi ) (,) X ) -> 0 < ( ( x + T ) - X ) ) |
| 873 |
868 864 872
|
ltled |
|- ( x e. ( ( X - _pi ) (,) X ) -> 0 <_ ( ( x + T ) - X ) ) |
| 874 |
842 838
|
readdcld |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( X + T ) e. RR ) |
| 875 |
|
iooltub |
|- ( ( ( X - _pi ) e. RR* /\ X e. RR* /\ x e. ( ( X - _pi ) (,) X ) ) -> x < X ) |
| 876 |
844 845 846 875
|
syl3anc |
|- ( x e. ( ( X - _pi ) (,) X ) -> x < X ) |
| 877 |
840 842 838 876
|
ltadd1dd |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( x + T ) < ( X + T ) ) |
| 878 |
841 874 842 877
|
ltsub1dd |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) < ( ( X + T ) - X ) ) |
| 879 |
|
pncan2 |
|- ( ( X e. CC /\ T e. CC ) -> ( ( X + T ) - X ) = T ) |
| 880 |
27 123 879
|
mp2an |
|- ( ( X + T ) - X ) = T |
| 881 |
878 880
|
breqtrdi |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) < T ) |
| 882 |
|
modid |
|- ( ( ( ( ( x + T ) - X ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( ( x + T ) - X ) /\ ( ( x + T ) - X ) < T ) ) -> ( ( ( x + T ) - X ) mod T ) = ( ( x + T ) - X ) ) |
| 883 |
864 867 873 881 882
|
syl22anc |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( x + T ) - X ) mod T ) = ( ( x + T ) - X ) ) |
| 884 |
866 883
|
eqtr2d |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) = ( ( ( ( x + T ) - X ) mod T ) mod T ) ) |
| 885 |
884
|
adantl |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( x + T ) - X ) = ( ( ( ( x + T ) - X ) mod T ) mod T ) ) |
| 886 |
|
oveq2 |
|- ( ( X mod T ) = 0 -> ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) = ( ( ( ( x + T ) - X ) mod T ) + 0 ) ) |
| 887 |
886
|
adantr |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) = ( ( ( ( x + T ) - X ) mod T ) + 0 ) ) |
| 888 |
864 867
|
modcld |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( x + T ) - X ) mod T ) e. RR ) |
| 889 |
888
|
recnd |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( x + T ) - X ) mod T ) e. CC ) |
| 890 |
889
|
addridd |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( x + T ) - X ) mod T ) + 0 ) = ( ( ( x + T ) - X ) mod T ) ) |
| 891 |
890
|
adantl |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) mod T ) + 0 ) = ( ( ( x + T ) - X ) mod T ) ) |
| 892 |
887 891
|
eqtr2d |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( x + T ) - X ) mod T ) = ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) ) |
| 893 |
892
|
oveq1d |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) mod T ) mod T ) = ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) ) |
| 894 |
|
modaddabs |
|- ( ( ( ( x + T ) - X ) e. RR /\ X e. RR /\ T e. RR+ ) -> ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) = ( ( ( ( x + T ) - X ) + X ) mod T ) ) |
| 895 |
864 842 867 894
|
syl3anc |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) = ( ( ( ( x + T ) - X ) + X ) mod T ) ) |
| 896 |
895
|
adantl |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) = ( ( ( ( x + T ) - X ) + X ) mod T ) ) |
| 897 |
885 893 896
|
3eqtrd |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( x + T ) - X ) = ( ( ( ( x + T ) - X ) + X ) mod T ) ) |
| 898 |
145
|
recnd |
|- ( x e. RR -> ( x + T ) e. CC ) |
| 899 |
27
|
a1i |
|- ( x e. RR -> X e. CC ) |
| 900 |
898 899
|
npcand |
|- ( x e. RR -> ( ( ( x + T ) - X ) + X ) = ( x + T ) ) |
| 901 |
124
|
a1i |
|- ( x e. RR -> ( 1 x. T ) = T ) |
| 902 |
901
|
oveq2d |
|- ( x e. RR -> ( x + ( 1 x. T ) ) = ( x + T ) ) |
| 903 |
900 902
|
eqtr4d |
|- ( x e. RR -> ( ( ( x + T ) - X ) + X ) = ( x + ( 1 x. T ) ) ) |
| 904 |
903
|
oveq1d |
|- ( x e. RR -> ( ( ( ( x + T ) - X ) + X ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) ) |
| 905 |
840 904
|
syl |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( x + T ) - X ) + X ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) ) |
| 906 |
905
|
adantl |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) + X ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) ) |
| 907 |
|
1zzd |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> 1 e. ZZ ) |
| 908 |
831 834 907 138
|
syl3anc |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
| 909 |
897 906 908
|
3eqtrrd |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) = ( ( x + T ) - X ) ) |
| 910 |
851 863 909
|
3brtr4d |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi < ( x mod T ) ) |
| 911 |
833 835 910
|
ltled |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi <_ ( x mod T ) ) |
| 912 |
833 835 911
|
lensymd |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> -. ( x mod T ) < _pi ) |
| 913 |
912
|
iffalsed |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 914 |
832 913
|
eqtrd |
|- ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = -u 1 ) |
| 915 |
914
|
mpteq2dva |
|- ( ( X mod T ) = 0 -> ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) ) |
| 916 |
830 915
|
eqtr2d |
|- ( ( X mod T ) = 0 -> ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) = ( F |` ( ( X - _pi ) (,) X ) ) ) |
| 917 |
916
|
oveq1d |
|- ( ( X mod T ) = 0 -> ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) = ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) ) |
| 918 |
843
|
a1i |
|- ( T. -> ( X - _pi ) e. RR* ) |
| 919 |
3
|
a1i |
|- ( T. -> X e. RR ) |
| 920 |
|
ltsubrp |
|- ( ( X e. RR /\ _pi e. RR+ ) -> ( X - _pi ) < X ) |
| 921 |
3 184 920
|
mp2an |
|- ( X - _pi ) < X |
| 922 |
921
|
a1i |
|- ( T. -> ( X - _pi ) < X ) |
| 923 |
|
mnflt |
|- ( ( X - _pi ) e. RR -> -oo < ( X - _pi ) ) |
| 924 |
|
xrltle |
|- ( ( -oo e. RR* /\ ( X - _pi ) e. RR* ) -> ( -oo < ( X - _pi ) -> -oo <_ ( X - _pi ) ) ) |
| 925 |
365 843 924
|
mp2an |
|- ( -oo < ( X - _pi ) -> -oo <_ ( X - _pi ) ) |
| 926 |
836 923 925
|
mp2b |
|- -oo <_ ( X - _pi ) |
| 927 |
926
|
a1i |
|- ( T. -> -oo <_ ( X - _pi ) ) |
| 928 |
363 918 919 922 817 366 927
|
limcresiooub |
|- ( T. -> ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 929 |
928
|
mptru |
|- ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) |
| 930 |
917 929
|
eqtr2di |
|- ( ( X mod T ) = 0 -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) ) |
| 931 |
822 827 930
|
3eltr4d |
|- ( ( X mod T ) = 0 -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 932 |
931
|
adantl |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ ( X mod T ) = 0 ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 933 |
155
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> _pi e. RR* ) |
| 934 |
122
|
rexri |
|- T e. RR* |
| 935 |
934
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> T e. RR* ) |
| 936 |
767
|
rexri |
|- ( X mod T ) e. RR* |
| 937 |
936
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. RR* ) |
| 938 |
120
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> _pi e. RR ) |
| 939 |
767
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. RR ) |
| 940 |
|
pm4.56 |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) <-> -. ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) ) |
| 941 |
940
|
biimpi |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> -. ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) ) |
| 942 |
|
olc |
|- ( ( X mod T ) = 0 -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) ) |
| 943 |
942
|
adantl |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) = 0 ) -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) ) |
| 944 |
153
|
a1i |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> 0 e. RR* ) |
| 945 |
155
|
a1i |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> _pi e. RR* ) |
| 946 |
767
|
a1i |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( X mod T ) e. RR ) |
| 947 |
|
0red |
|- ( ( X mod T ) =/= 0 -> 0 e. RR ) |
| 948 |
767
|
a1i |
|- ( ( X mod T ) =/= 0 -> ( X mod T ) e. RR ) |
| 949 |
|
modge0 |
|- ( ( X e. RR /\ T e. RR+ ) -> 0 <_ ( X mod T ) ) |
| 950 |
3 135 949
|
mp2an |
|- 0 <_ ( X mod T ) |
| 951 |
950
|
a1i |
|- ( ( X mod T ) =/= 0 -> 0 <_ ( X mod T ) ) |
| 952 |
|
id |
|- ( ( X mod T ) =/= 0 -> ( X mod T ) =/= 0 ) |
| 953 |
947 948 951 952
|
leneltd |
|- ( ( X mod T ) =/= 0 -> 0 < ( X mod T ) ) |
| 954 |
953
|
adantl |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> 0 < ( X mod T ) ) |
| 955 |
|
simpl |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( X mod T ) < _pi ) |
| 956 |
944 945 946 954 955
|
eliood |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( X mod T ) e. ( 0 (,) _pi ) ) |
| 957 |
956
|
orcd |
|- ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) ) |
| 958 |
943 957
|
pm2.61dane |
|- ( ( X mod T ) < _pi -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) ) |
| 959 |
941 958
|
nsyl |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> -. ( X mod T ) < _pi ) |
| 960 |
938 939 959
|
nltled |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> _pi <_ ( X mod T ) ) |
| 961 |
|
modlt |
|- ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) < T ) |
| 962 |
3 135 961
|
mp2an |
|- ( X mod T ) < T |
| 963 |
962
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) < T ) |
| 964 |
933 935 937 960 963
|
elicod |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. ( _pi [,) T ) ) |
| 965 |
|
eqid |
|- ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) = ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) |
| 966 |
965 818 203 819
|
constlimc |
|- ( T. -> 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) ) |
| 967 |
966
|
mptru |
|- 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) |
| 968 |
967
|
a1i |
|- ( ( X mod T ) = _pi -> 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) ) |
| 969 |
|
id |
|- ( ( X mod T ) = _pi -> ( X mod T ) = _pi ) |
| 970 |
|
ubioc1 |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 < _pi ) -> _pi e. ( 0 (,] _pi ) ) |
| 971 |
153 155 72 970
|
mp3an |
|- _pi e. ( 0 (,] _pi ) |
| 972 |
969 971
|
eqeltrdi |
|- ( ( X mod T ) = _pi -> ( X mod T ) e. ( 0 (,] _pi ) ) |
| 973 |
972
|
iftrued |
|- ( ( X mod T ) = _pi -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 ) |
| 974 |
363 817
|
feqresmpt |
|- ( T. -> ( F |` ( ( X - _pi ) (,) X ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) ) |
| 975 |
974
|
mptru |
|- ( F |` ( ( X - _pi ) (,) X ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) |
| 976 |
840 110 147
|
sylancl |
|- ( x e. ( ( X - _pi ) (,) X ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 977 |
976
|
adantl |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 978 |
|
simpr |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> x e. ( ( X - _pi ) (,) X ) ) |
| 979 |
969
|
eqcomd |
|- ( ( X mod T ) = _pi -> _pi = ( X mod T ) ) |
| 980 |
979
|
oveq2d |
|- ( ( X mod T ) = _pi -> ( X - _pi ) = ( X - ( X mod T ) ) ) |
| 981 |
980
|
oveq1d |
|- ( ( X mod T ) = _pi -> ( ( X - _pi ) (,) X ) = ( ( X - ( X mod T ) ) (,) X ) ) |
| 982 |
981
|
adantr |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( X - _pi ) (,) X ) = ( ( X - ( X mod T ) ) (,) X ) ) |
| 983 |
978 982
|
eleqtrd |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> x e. ( ( X - ( X mod T ) ) (,) X ) ) |
| 984 |
983 803
|
syl |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) < ( X mod T ) ) |
| 985 |
|
simpl |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( X mod T ) = _pi ) |
| 986 |
984 985
|
breqtrd |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) < _pi ) |
| 987 |
986
|
iftrued |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 988 |
977 987
|
eqtrd |
|- ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = 1 ) |
| 989 |
988
|
mpteq2dva |
|- ( ( X mod T ) = _pi -> ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) ) |
| 990 |
975 989
|
eqtr2id |
|- ( ( X mod T ) = _pi -> ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) = ( F |` ( ( X - _pi ) (,) X ) ) ) |
| 991 |
990
|
oveq1d |
|- ( ( X mod T ) = _pi -> ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) = ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) ) |
| 992 |
991 929
|
eqtr2di |
|- ( ( X mod T ) = _pi -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) ) |
| 993 |
968 973 992
|
3eltr4d |
|- ( ( X mod T ) = _pi -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 994 |
993
|
adantl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ ( X mod T ) = _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 995 |
155
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi e. RR* ) |
| 996 |
934
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> T e. RR* ) |
| 997 |
767
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) e. RR ) |
| 998 |
120
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi e. RR ) |
| 999 |
|
icogelb |
|- ( ( _pi e. RR* /\ T e. RR* /\ ( X mod T ) e. ( _pi [,) T ) ) -> _pi <_ ( X mod T ) ) |
| 1000 |
155 934 999
|
mp3an12 |
|- ( ( X mod T ) e. ( _pi [,) T ) -> _pi <_ ( X mod T ) ) |
| 1001 |
1000
|
adantr |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi <_ ( X mod T ) ) |
| 1002 |
|
neqne |
|- ( -. ( X mod T ) = _pi -> ( X mod T ) =/= _pi ) |
| 1003 |
1002
|
adantl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) =/= _pi ) |
| 1004 |
998 997 1001 1003
|
leneltd |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi < ( X mod T ) ) |
| 1005 |
962
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) < T ) |
| 1006 |
995 996 997 1004 1005
|
eliood |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) e. ( _pi (,) T ) ) |
| 1007 |
|
eqid |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) |
| 1008 |
|
ioossre |
|- ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ RR |
| 1009 |
1008
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ RR ) |
| 1010 |
1009 207
|
sstrdi |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ CC ) |
| 1011 |
|
neg1cn |
|- -u 1 e. CC |
| 1012 |
1011
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -u 1 e. CC ) |
| 1013 |
27
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> X e. CC ) |
| 1014 |
1007 1010 1012 1013
|
constlimc |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -u 1 e. ( ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) limCC X ) ) |
| 1015 |
153
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> 0 e. RR* ) |
| 1016 |
120
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> _pi e. RR ) |
| 1017 |
936
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( X mod T ) e. RR* ) |
| 1018 |
|
ioogtlb |
|- ( ( _pi e. RR* /\ T e. RR* /\ ( X mod T ) e. ( _pi (,) T ) ) -> _pi < ( X mod T ) ) |
| 1019 |
155 934 1018
|
mp3an12 |
|- ( ( X mod T ) e. ( _pi (,) T ) -> _pi < ( X mod T ) ) |
| 1020 |
1015 1016 1017 1019
|
gtnelioc |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -. ( X mod T ) e. ( 0 (,] _pi ) ) |
| 1021 |
1020
|
iffalsed |
|- ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = -u 1 ) |
| 1022 |
1008
|
a1i |
|- ( T. -> ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ RR ) |
| 1023 |
363 1022
|
feqresmpt |
|- ( T. -> ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) ) |
| 1024 |
1023
|
mptru |
|- ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) |
| 1025 |
|
elioore |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x e. RR ) |
| 1026 |
1025 110 147
|
sylancl |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 1027 |
1026
|
adantl |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 1028 |
120
|
a1i |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi e. RR ) |
| 1029 |
135
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> T e. RR+ ) |
| 1030 |
1025 1029
|
modcld |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x mod T ) e. RR ) |
| 1031 |
1030
|
adantl |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( x mod T ) e. RR ) |
| 1032 |
3 120
|
readdcli |
|- ( X + _pi ) e. RR |
| 1033 |
1032
|
recni |
|- ( X + _pi ) e. CC |
| 1034 |
1033
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X + _pi ) e. CC ) |
| 1035 |
27
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> X e. CC ) |
| 1036 |
767
|
recni |
|- ( X mod T ) e. CC |
| 1037 |
1036
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X mod T ) e. CC ) |
| 1038 |
1034 1035 1037
|
nnncan2d |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X + _pi ) - ( X mod T ) ) - ( X - ( X mod T ) ) ) = ( ( X + _pi ) - X ) ) |
| 1039 |
1038 861
|
eqtr2di |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi = ( ( ( X + _pi ) - ( X mod T ) ) - ( X - ( X mod T ) ) ) ) |
| 1040 |
1032 767
|
resubcli |
|- ( ( X + _pi ) - ( X mod T ) ) e. RR |
| 1041 |
1040
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X + _pi ) - ( X mod T ) ) e. RR ) |
| 1042 |
768
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X mod T ) ) e. RR ) |
| 1043 |
1040
|
rexri |
|- ( ( X + _pi ) - ( X mod T ) ) e. RR* |
| 1044 |
1043
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X + _pi ) - ( X mod T ) ) e. RR* ) |
| 1045 |
3
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> X e. RR ) |
| 1046 |
1045
|
rexrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> X e. RR* ) |
| 1047 |
|
id |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) |
| 1048 |
|
ioogtlb |
|- ( ( ( ( X + _pi ) - ( X mod T ) ) e. RR* /\ X e. RR* /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( ( X + _pi ) - ( X mod T ) ) < x ) |
| 1049 |
1044 1046 1047 1048
|
syl3anc |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X + _pi ) - ( X mod T ) ) < x ) |
| 1050 |
1041 1025 1042 1049
|
ltsub1dd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X + _pi ) - ( X mod T ) ) - ( X - ( X mod T ) ) ) < ( x - ( X - ( X mod T ) ) ) ) |
| 1051 |
1039 1050
|
eqbrtrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi < ( x - ( X - ( X mod T ) ) ) ) |
| 1052 |
1025
|
recnd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x e. CC ) |
| 1053 |
|
sub31 |
|- ( ( x e. CC /\ X e. CC /\ ( X mod T ) e. CC ) -> ( x - ( X - ( X mod T ) ) ) = ( ( X mod T ) - ( X - x ) ) ) |
| 1054 |
1052 1035 1037 1053
|
syl3anc |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) = ( ( X mod T ) - ( X - x ) ) ) |
| 1055 |
1051 1054
|
breqtrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi < ( ( X mod T ) - ( X - x ) ) ) |
| 1056 |
1055
|
adantl |
|- ( ( _pi < ( X mod T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi < ( ( X mod T ) - ( X - x ) ) ) |
| 1057 |
1045 1025
|
resubcld |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - x ) e. RR ) |
| 1058 |
|
0red |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 e. RR ) |
| 1059 |
|
iooltub |
|- ( ( ( ( X + _pi ) - ( X mod T ) ) e. RR* /\ X e. RR* /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> x < X ) |
| 1060 |
1044 1046 1047 1059
|
syl3anc |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x < X ) |
| 1061 |
1025 1045
|
posdifd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x < X <-> 0 < ( X - x ) ) ) |
| 1062 |
1060 1061
|
mpbid |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < ( X - x ) ) |
| 1063 |
1058 1057 1062
|
ltled |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 <_ ( X - x ) ) |
| 1064 |
1045 1041
|
resubcld |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( ( X + _pi ) - ( X mod T ) ) ) e. RR ) |
| 1065 |
122
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> T e. RR ) |
| 1066 |
1041 1025 1045 1049
|
ltsub2dd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - x ) < ( X - ( ( X + _pi ) - ( X mod T ) ) ) ) |
| 1067 |
|
sub31 |
|- ( ( X e. CC /\ ( X + _pi ) e. CC /\ ( X mod T ) e. CC ) -> ( X - ( ( X + _pi ) - ( X mod T ) ) ) = ( ( X mod T ) - ( ( X + _pi ) - X ) ) ) |
| 1068 |
27 1033 1036 1067
|
mp3an |
|- ( X - ( ( X + _pi ) - ( X mod T ) ) ) = ( ( X mod T ) - ( ( X + _pi ) - X ) ) |
| 1069 |
861
|
oveq2i |
|- ( ( X mod T ) - ( ( X + _pi ) - X ) ) = ( ( X mod T ) - _pi ) |
| 1070 |
1068 1069
|
eqtri |
|- ( X - ( ( X + _pi ) - ( X mod T ) ) ) = ( ( X mod T ) - _pi ) |
| 1071 |
|
ltsubrp |
|- ( ( ( X mod T ) e. RR /\ _pi e. RR+ ) -> ( ( X mod T ) - _pi ) < ( X mod T ) ) |
| 1072 |
767 184 1071
|
mp2an |
|- ( ( X mod T ) - _pi ) < ( X mod T ) |
| 1073 |
767 120
|
resubcli |
|- ( ( X mod T ) - _pi ) e. RR |
| 1074 |
1073 767 122
|
lttri |
|- ( ( ( ( X mod T ) - _pi ) < ( X mod T ) /\ ( X mod T ) < T ) -> ( ( X mod T ) - _pi ) < T ) |
| 1075 |
1072 962 1074
|
mp2an |
|- ( ( X mod T ) - _pi ) < T |
| 1076 |
1070 1075
|
eqbrtri |
|- ( X - ( ( X + _pi ) - ( X mod T ) ) ) < T |
| 1077 |
1076
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( ( X + _pi ) - ( X mod T ) ) ) < T ) |
| 1078 |
1057 1064 1065 1066 1077
|
lttrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - x ) < T ) |
| 1079 |
|
modid |
|- ( ( ( ( X - x ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( X - x ) /\ ( X - x ) < T ) ) -> ( ( X - x ) mod T ) = ( X - x ) ) |
| 1080 |
1057 1029 1063 1078 1079
|
syl22anc |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X - x ) mod T ) = ( X - x ) ) |
| 1081 |
1080
|
oveq2d |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( ( X - x ) mod T ) ) = ( ( X mod T ) - ( X - x ) ) ) |
| 1082 |
1081
|
oveq1d |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) = ( ( ( X mod T ) - ( X - x ) ) mod T ) ) |
| 1083 |
767
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X mod T ) e. RR ) |
| 1084 |
1083 1057
|
resubcld |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) e. RR ) |
| 1085 |
120
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi e. RR ) |
| 1086 |
1054 1084
|
eqeltrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) e. RR ) |
| 1087 |
72
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < _pi ) |
| 1088 |
1058 1085 1086 1087 1051
|
lttrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < ( x - ( X - ( X mod T ) ) ) ) |
| 1089 |
1088 1054
|
breqtrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < ( ( X mod T ) - ( X - x ) ) ) |
| 1090 |
1058 1084 1089
|
ltled |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 <_ ( ( X mod T ) - ( X - x ) ) ) |
| 1091 |
1045 1042
|
resubcld |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X - ( X mod T ) ) ) e. RR ) |
| 1092 |
1025 1045 1042 1060
|
ltsub1dd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) < ( X - ( X - ( X mod T ) ) ) ) |
| 1093 |
|
nncan |
|- ( ( X e. CC /\ ( X mod T ) e. CC ) -> ( X - ( X - ( X mod T ) ) ) = ( X mod T ) ) |
| 1094 |
27 1036 1093
|
mp2an |
|- ( X - ( X - ( X mod T ) ) ) = ( X mod T ) |
| 1095 |
1094 962
|
eqbrtri |
|- ( X - ( X - ( X mod T ) ) ) < T |
| 1096 |
1095
|
a1i |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X - ( X mod T ) ) ) < T ) |
| 1097 |
1086 1091 1065 1092 1096
|
lttrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) < T ) |
| 1098 |
1054 1097
|
eqbrtrrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) < T ) |
| 1099 |
|
modid |
|- ( ( ( ( ( X mod T ) - ( X - x ) ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( ( X mod T ) - ( X - x ) ) /\ ( ( X mod T ) - ( X - x ) ) < T ) ) -> ( ( ( X mod T ) - ( X - x ) ) mod T ) = ( ( X mod T ) - ( X - x ) ) ) |
| 1100 |
1084 1029 1090 1098 1099
|
syl22anc |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X mod T ) - ( X - x ) ) mod T ) = ( ( X mod T ) - ( X - x ) ) ) |
| 1101 |
1082 1100
|
eqtr2d |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) = ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) ) |
| 1102 |
|
modsubmodmod |
|- ( ( X e. RR /\ ( X - x ) e. RR /\ T e. RR+ ) -> ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) = ( ( X - ( X - x ) ) mod T ) ) |
| 1103 |
1045 1057 1029 1102
|
syl3anc |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) = ( ( X - ( X - x ) ) mod T ) ) |
| 1104 |
1035 1052
|
nncand |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X - x ) ) = x ) |
| 1105 |
1104
|
oveq1d |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X - ( X - x ) ) mod T ) = ( x mod T ) ) |
| 1106 |
1101 1103 1105
|
3eqtrd |
|- ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) = ( x mod T ) ) |
| 1107 |
1106
|
adantl |
|- ( ( _pi < ( X mod T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( ( X mod T ) - ( X - x ) ) = ( x mod T ) ) |
| 1108 |
1056 1107
|
breqtrd |
|- ( ( _pi < ( X mod T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi < ( x mod T ) ) |
| 1109 |
1019 1108
|
sylan |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi < ( x mod T ) ) |
| 1110 |
1028 1031 1109
|
ltled |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi <_ ( x mod T ) ) |
| 1111 |
1028 1031 1110
|
lensymd |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> -. ( x mod T ) < _pi ) |
| 1112 |
1111
|
iffalsed |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 1113 |
1027 1112
|
eqtrd |
|- ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = -u 1 ) |
| 1114 |
1113
|
mpteq2dva |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) ) |
| 1115 |
1024 1114
|
eqtr2id |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) = ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) ) |
| 1116 |
1115
|
oveq1d |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) limCC X ) = ( ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) limCC X ) ) |
| 1117 |
209
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> F : RR --> CC ) |
| 1118 |
1043
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( X + _pi ) - ( X mod T ) ) e. RR* ) |
| 1119 |
3
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> X e. RR ) |
| 1120 |
|
elioore |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( X mod T ) e. RR ) |
| 1121 |
|
ltaddsublt |
|- ( ( X e. RR /\ _pi e. RR /\ ( X mod T ) e. RR ) -> ( _pi < ( X mod T ) <-> ( ( X + _pi ) - ( X mod T ) ) < X ) ) |
| 1122 |
1119 1016 1120 1121
|
syl3anc |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( _pi < ( X mod T ) <-> ( ( X + _pi ) - ( X mod T ) ) < X ) ) |
| 1123 |
1019 1122
|
mpbid |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( X + _pi ) - ( X mod T ) ) < X ) |
| 1124 |
365
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -oo e. RR* ) |
| 1125 |
|
mnflt |
|- ( ( ( X + _pi ) - ( X mod T ) ) e. RR -> -oo < ( ( X + _pi ) - ( X mod T ) ) ) |
| 1126 |
|
xrltle |
|- ( ( -oo e. RR* /\ ( ( X + _pi ) - ( X mod T ) ) e. RR* ) -> ( -oo < ( ( X + _pi ) - ( X mod T ) ) -> -oo <_ ( ( X + _pi ) - ( X mod T ) ) ) ) |
| 1127 |
365 1043 1126
|
mp2an |
|- ( -oo < ( ( X + _pi ) - ( X mod T ) ) -> -oo <_ ( ( X + _pi ) - ( X mod T ) ) ) |
| 1128 |
1040 1125 1127
|
mp2b |
|- -oo <_ ( ( X + _pi ) - ( X mod T ) ) |
| 1129 |
1128
|
a1i |
|- ( ( X mod T ) e. ( _pi (,) T ) -> -oo <_ ( ( X + _pi ) - ( X mod T ) ) ) |
| 1130 |
1117 1118 1119 1123 1009 1124 1129
|
limcresiooub |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 1131 |
1116 1130
|
eqtr2d |
|- ( ( X mod T ) e. ( _pi (,) T ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) limCC X ) ) |
| 1132 |
1014 1021 1131
|
3eltr4d |
|- ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 1133 |
1006 1132
|
syl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 1134 |
994 1133
|
pm2.61dan |
|- ( ( X mod T ) e. ( _pi [,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 1135 |
964 1134
|
syl |
|- ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 1136 |
932 1135
|
pm2.61dan |
|- ( -. ( X mod T ) e. ( 0 (,) _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 1137 |
814 1136
|
pm2.61i |
|- if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) |
| 1138 |
|
eqid |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) |
| 1139 |
|
ioossre |
|- ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ RR |
| 1140 |
1139
|
a1i |
|- ( T. -> ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ RR ) |
| 1141 |
1140 207
|
sstrdi |
|- ( T. -> ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ CC ) |
| 1142 |
1138 1141 203 819
|
constlimc |
|- ( T. -> 1 e. ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) ) |
| 1143 |
1142
|
mptru |
|- 1 e. ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) |
| 1144 |
1143
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> 1 e. ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) ) |
| 1145 |
2
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) ) |
| 1146 |
|
oveq1 |
|- ( x = X -> ( x mod T ) = ( X mod T ) ) |
| 1147 |
1146
|
breq1d |
|- ( x = X -> ( ( x mod T ) < _pi <-> ( X mod T ) < _pi ) ) |
| 1148 |
1147
|
ifbid |
|- ( x = X -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 1149 |
1148
|
adantl |
|- ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x = X ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 1150 |
3
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> X e. RR ) |
| 1151 |
108 109
|
ifcli |
|- if ( ( X mod T ) < _pi , 1 , -u 1 ) e. RR |
| 1152 |
1151
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) e. RR ) |
| 1153 |
1145 1149 1150 1152
|
fvmptd |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 1154 |
|
icoltub |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 [,) _pi ) ) -> ( X mod T ) < _pi ) |
| 1155 |
153 155 1154
|
mp3an12 |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) < _pi ) |
| 1156 |
1155
|
iftrued |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 1157 |
1153 1156
|
eqtrd |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) = 1 ) |
| 1158 |
363 1140
|
feqresmpt |
|- ( T. -> ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> ( F ` x ) ) ) |
| 1159 |
1158
|
mptru |
|- ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> ( F ` x ) ) |
| 1160 |
|
elioore |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x e. RR ) |
| 1161 |
1160 110 147
|
sylancl |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 1162 |
1161
|
adantl |
|- ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 1163 |
3
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X e. RR ) |
| 1164 |
1160 1163
|
resubcld |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) e. RR ) |
| 1165 |
135
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> T e. RR+ ) |
| 1166 |
|
0red |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 e. RR ) |
| 1167 |
1163
|
rexrd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X e. RR* ) |
| 1168 |
120 767
|
resubcli |
|- ( _pi - ( X mod T ) ) e. RR |
| 1169 |
3 1168
|
readdcli |
|- ( X + ( _pi - ( X mod T ) ) ) e. RR |
| 1170 |
1169
|
rexri |
|- ( X + ( _pi - ( X mod T ) ) ) e. RR* |
| 1171 |
1170
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X + ( _pi - ( X mod T ) ) ) e. RR* ) |
| 1172 |
|
id |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) |
| 1173 |
|
ioogtlb |
|- ( ( X e. RR* /\ ( X + ( _pi - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> X < x ) |
| 1174 |
1167 1171 1172 1173
|
syl3anc |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X < x ) |
| 1175 |
1163 1160
|
posdifd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X < x <-> 0 < ( x - X ) ) ) |
| 1176 |
1174 1175
|
mpbid |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 < ( x - X ) ) |
| 1177 |
1166 1164 1176
|
ltled |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 <_ ( x - X ) ) |
| 1178 |
120
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> _pi e. RR ) |
| 1179 |
122
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> T e. RR ) |
| 1180 |
1169
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X + ( _pi - ( X mod T ) ) ) e. RR ) |
| 1181 |
1180 1163
|
resubcld |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X + ( _pi - ( X mod T ) ) ) - X ) e. RR ) |
| 1182 |
|
iooltub |
|- ( ( X e. RR* /\ ( X + ( _pi - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> x < ( X + ( _pi - ( X mod T ) ) ) ) |
| 1183 |
1167 1171 1172 1182
|
syl3anc |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x < ( X + ( _pi - ( X mod T ) ) ) ) |
| 1184 |
1160 1180 1163 1183
|
ltsub1dd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) < ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) |
| 1185 |
1168
|
recni |
|- ( _pi - ( X mod T ) ) e. CC |
| 1186 |
|
pncan2 |
|- ( ( X e. CC /\ ( _pi - ( X mod T ) ) e. CC ) -> ( ( X + ( _pi - ( X mod T ) ) ) - X ) = ( _pi - ( X mod T ) ) ) |
| 1187 |
27 1185 1186
|
mp2an |
|- ( ( X + ( _pi - ( X mod T ) ) ) - X ) = ( _pi - ( X mod T ) ) |
| 1188 |
|
subge02 |
|- ( ( _pi e. RR /\ ( X mod T ) e. RR ) -> ( 0 <_ ( X mod T ) <-> ( _pi - ( X mod T ) ) <_ _pi ) ) |
| 1189 |
120 767 1188
|
mp2an |
|- ( 0 <_ ( X mod T ) <-> ( _pi - ( X mod T ) ) <_ _pi ) |
| 1190 |
950 1189
|
mpbi |
|- ( _pi - ( X mod T ) ) <_ _pi |
| 1191 |
1187 1190
|
eqbrtri |
|- ( ( X + ( _pi - ( X mod T ) ) ) - X ) <_ _pi |
| 1192 |
1191
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X + ( _pi - ( X mod T ) ) ) - X ) <_ _pi ) |
| 1193 |
1164 1181 1178 1184 1192
|
ltletrd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) < _pi ) |
| 1194 |
187
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> _pi < T ) |
| 1195 |
1164 1178 1179 1193 1194
|
lttrd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) < T ) |
| 1196 |
|
modid |
|- ( ( ( ( x - X ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( x - X ) /\ ( x - X ) < T ) ) -> ( ( x - X ) mod T ) = ( x - X ) ) |
| 1197 |
1164 1165 1177 1195 1196
|
syl22anc |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( x - X ) mod T ) = ( x - X ) ) |
| 1198 |
1197
|
oveq2d |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( ( x - X ) mod T ) ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1199 |
1198
|
oveq1d |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( ( X mod T ) + ( x - X ) ) mod T ) ) |
| 1200 |
767
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X mod T ) e. RR ) |
| 1201 |
1200 1164
|
readdcld |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) e. RR ) |
| 1202 |
1163 1163
|
resubcld |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X - X ) e. RR ) |
| 1203 |
1200 1202
|
readdcld |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( X - X ) ) e. RR ) |
| 1204 |
27
|
subidi |
|- ( X - X ) = 0 |
| 1205 |
1204
|
oveq2i |
|- ( ( X mod T ) + ( X - X ) ) = ( ( X mod T ) + 0 ) |
| 1206 |
1036
|
addridi |
|- ( ( X mod T ) + 0 ) = ( X mod T ) |
| 1207 |
1205 1206
|
eqtr2i |
|- ( X mod T ) = ( ( X mod T ) + ( X - X ) ) |
| 1208 |
950 1207
|
breqtri |
|- 0 <_ ( ( X mod T ) + ( X - X ) ) |
| 1209 |
1208
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 <_ ( ( X mod T ) + ( X - X ) ) ) |
| 1210 |
1163 1160 1163 1174
|
ltsub1dd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X - X ) < ( x - X ) ) |
| 1211 |
1202 1164 1200 1210
|
ltadd2dd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( X - X ) ) < ( ( X mod T ) + ( x - X ) ) ) |
| 1212 |
1166 1203 1201 1209 1211
|
lelttrd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 < ( ( X mod T ) + ( x - X ) ) ) |
| 1213 |
1166 1201 1212
|
ltled |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 <_ ( ( X mod T ) + ( x - X ) ) ) |
| 1214 |
1164 1181 1200 1184
|
ltadd2dd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < ( ( X mod T ) + ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) ) |
| 1215 |
1187
|
oveq2i |
|- ( ( X mod T ) + ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) = ( ( X mod T ) + ( _pi - ( X mod T ) ) ) |
| 1216 |
1036 56
|
pncan3i |
|- ( ( X mod T ) + ( _pi - ( X mod T ) ) ) = _pi |
| 1217 |
1215 1216
|
eqtri |
|- ( ( X mod T ) + ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) = _pi |
| 1218 |
1214 1217
|
breqtrdi |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < _pi ) |
| 1219 |
1201 1178 1179 1218 1194
|
lttrd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < T ) |
| 1220 |
|
modid |
|- ( ( ( ( ( X mod T ) + ( x - X ) ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( ( X mod T ) + ( x - X ) ) /\ ( ( X mod T ) + ( x - X ) ) < T ) ) -> ( ( ( X mod T ) + ( x - X ) ) mod T ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1221 |
1201 1165 1213 1219 1220
|
syl22anc |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( x - X ) ) mod T ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1222 |
1199 1221
|
eqtr2d |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) ) |
| 1223 |
|
modaddabs |
|- ( ( X e. RR /\ ( x - X ) e. RR /\ T e. RR+ ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( X + ( x - X ) ) mod T ) ) |
| 1224 |
1163 1164 1165 1223
|
syl3anc |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( X + ( x - X ) ) mod T ) ) |
| 1225 |
27
|
a1i |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X e. CC ) |
| 1226 |
1160
|
recnd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x e. CC ) |
| 1227 |
1225 1226
|
pncan3d |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X + ( x - X ) ) = x ) |
| 1228 |
1227
|
oveq1d |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X + ( x - X ) ) mod T ) = ( x mod T ) ) |
| 1229 |
1222 1224 1228
|
3eqtrrd |
|- ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x mod T ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1230 |
1229
|
adantl |
|- ( ( ( X mod T ) < _pi /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( x mod T ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1231 |
1218
|
adantl |
|- ( ( ( X mod T ) < _pi /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < _pi ) |
| 1232 |
1230 1231
|
eqbrtrd |
|- ( ( ( X mod T ) < _pi /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( x mod T ) < _pi ) |
| 1233 |
1155 1232
|
sylan |
|- ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( x mod T ) < _pi ) |
| 1234 |
1233
|
iftrued |
|- ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 1235 |
1162 1234
|
eqtrd |
|- ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( F ` x ) = 1 ) |
| 1236 |
1235
|
mpteq2dva |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> ( F ` x ) ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) ) |
| 1237 |
1159 1236
|
eqtr2id |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) = ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) ) |
| 1238 |
1237
|
oveq1d |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) = ( ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) limCC X ) ) |
| 1239 |
209
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> F : RR --> CC ) |
| 1240 |
1170
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X + ( _pi - ( X mod T ) ) ) e. RR* ) |
| 1241 |
1168
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( _pi - ( X mod T ) ) e. RR ) |
| 1242 |
767
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) e. RR ) |
| 1243 |
120
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> _pi e. RR ) |
| 1244 |
1242 1243
|
posdifd |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( X mod T ) < _pi <-> 0 < ( _pi - ( X mod T ) ) ) ) |
| 1245 |
1155 1244
|
mpbid |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> 0 < ( _pi - ( X mod T ) ) ) |
| 1246 |
1241 1245
|
elrpd |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( _pi - ( X mod T ) ) e. RR+ ) |
| 1247 |
1150 1246
|
ltaddrpd |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> X < ( X + ( _pi - ( X mod T ) ) ) ) |
| 1248 |
1139
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ RR ) |
| 1249 |
376
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> +oo e. RR* ) |
| 1250 |
|
ltpnf |
|- ( ( X + ( _pi - ( X mod T ) ) ) e. RR -> ( X + ( _pi - ( X mod T ) ) ) < +oo ) |
| 1251 |
|
xrltle |
|- ( ( ( X + ( _pi - ( X mod T ) ) ) e. RR* /\ +oo e. RR* ) -> ( ( X + ( _pi - ( X mod T ) ) ) < +oo -> ( X + ( _pi - ( X mod T ) ) ) <_ +oo ) ) |
| 1252 |
1170 376 1251
|
mp2an |
|- ( ( X + ( _pi - ( X mod T ) ) ) < +oo -> ( X + ( _pi - ( X mod T ) ) ) <_ +oo ) |
| 1253 |
1169 1250 1252
|
mp2b |
|- ( X + ( _pi - ( X mod T ) ) ) <_ +oo |
| 1254 |
1253
|
a1i |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X + ( _pi - ( X mod T ) ) ) <_ +oo ) |
| 1255 |
1239 1150 1240 1247 1248 1249 1254
|
limcresioolb |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) limCC X ) = ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 1256 |
1238 1255
|
eqtr2d |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) = ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) ) |
| 1257 |
1144 1157 1256
|
3eltr4d |
|- ( ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 1258 |
155
|
a1i |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> _pi e. RR* ) |
| 1259 |
934
|
a1i |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> T e. RR* ) |
| 1260 |
936
|
a1i |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) e. RR* ) |
| 1261 |
153
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> 0 e. RR* ) |
| 1262 |
155
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> _pi e. RR* ) |
| 1263 |
936
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> ( X mod T ) e. RR* ) |
| 1264 |
950
|
a1i |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> 0 <_ ( X mod T ) ) |
| 1265 |
767
|
a1i |
|- ( -. _pi <_ ( X mod T ) -> ( X mod T ) e. RR ) |
| 1266 |
120
|
a1i |
|- ( -. _pi <_ ( X mod T ) -> _pi e. RR ) |
| 1267 |
1265 1266
|
ltnled |
|- ( -. _pi <_ ( X mod T ) -> ( ( X mod T ) < _pi <-> -. _pi <_ ( X mod T ) ) ) |
| 1268 |
1267
|
ibir |
|- ( -. _pi <_ ( X mod T ) -> ( X mod T ) < _pi ) |
| 1269 |
1268
|
adantl |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> ( X mod T ) < _pi ) |
| 1270 |
1261 1262 1263 1264 1269
|
elicod |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> ( X mod T ) e. ( 0 [,) _pi ) ) |
| 1271 |
|
simpl |
|- ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> -. ( X mod T ) e. ( 0 [,) _pi ) ) |
| 1272 |
1270 1271
|
condan |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> _pi <_ ( X mod T ) ) |
| 1273 |
962
|
a1i |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) < T ) |
| 1274 |
1258 1259 1260 1272 1273
|
elicod |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) e. ( _pi [,) T ) ) |
| 1275 |
|
eqid |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) |
| 1276 |
|
ioossre |
|- ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ RR |
| 1277 |
1276
|
a1i |
|- ( T. -> ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ RR ) |
| 1278 |
1277 207
|
sstrdi |
|- ( T. -> ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ CC ) |
| 1279 |
1275 1278 305 819
|
constlimc |
|- ( T. -> -u 1 e. ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) ) |
| 1280 |
1279
|
mptru |
|- -u 1 e. ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) |
| 1281 |
1280
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> -u 1 e. ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) ) |
| 1282 |
|
1ex |
|- 1 e. _V |
| 1283 |
109
|
elexi |
|- -u 1 e. _V |
| 1284 |
1282 1283
|
ifex |
|- if ( ( X mod T ) < _pi , 1 , -u 1 ) e. _V |
| 1285 |
1148 2 1284
|
fvmpt |
|- ( X e. RR -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 1286 |
3 1285
|
ax-mp |
|- ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) |
| 1287 |
1286
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) ) |
| 1288 |
120
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> _pi e. RR ) |
| 1289 |
767
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( X mod T ) e. RR ) |
| 1290 |
1288 1289 1000
|
lensymd |
|- ( ( X mod T ) e. ( _pi [,) T ) -> -. ( X mod T ) < _pi ) |
| 1291 |
1290
|
iffalsed |
|- ( ( X mod T ) e. ( _pi [,) T ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 1292 |
1287 1291
|
eqtrd |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( F ` X ) = -u 1 ) |
| 1293 |
363 1277
|
feqresmpt |
|- ( T. -> ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> ( F ` x ) ) ) |
| 1294 |
1293
|
mptru |
|- ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> ( F ` x ) ) |
| 1295 |
|
elioore |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x e. RR ) |
| 1296 |
1295 110 147
|
sylancl |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 1297 |
1296
|
adantl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 1298 |
120
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi e. RR ) |
| 1299 |
3
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X e. RR ) |
| 1300 |
1295 1299
|
resubcld |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) e. RR ) |
| 1301 |
135
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> T e. RR+ ) |
| 1302 |
|
0red |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 e. RR ) |
| 1303 |
1299
|
rexrd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X e. RR* ) |
| 1304 |
122 767
|
resubcli |
|- ( T - ( X mod T ) ) e. RR |
| 1305 |
3 1304
|
readdcli |
|- ( X + ( T - ( X mod T ) ) ) e. RR |
| 1306 |
1305
|
rexri |
|- ( X + ( T - ( X mod T ) ) ) e. RR* |
| 1307 |
1306
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X + ( T - ( X mod T ) ) ) e. RR* ) |
| 1308 |
|
id |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) |
| 1309 |
|
ioogtlb |
|- ( ( X e. RR* /\ ( X + ( T - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> X < x ) |
| 1310 |
1303 1307 1308 1309
|
syl3anc |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X < x ) |
| 1311 |
1299 1295
|
posdifd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X < x <-> 0 < ( x - X ) ) ) |
| 1312 |
1310 1311
|
mpbid |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 < ( x - X ) ) |
| 1313 |
1302 1300 1312
|
ltled |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 <_ ( x - X ) ) |
| 1314 |
1305
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X + ( T - ( X mod T ) ) ) e. RR ) |
| 1315 |
1314 1299
|
resubcld |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X + ( T - ( X mod T ) ) ) - X ) e. RR ) |
| 1316 |
122
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> T e. RR ) |
| 1317 |
|
iooltub |
|- ( ( X e. RR* /\ ( X + ( T - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> x < ( X + ( T - ( X mod T ) ) ) ) |
| 1318 |
1303 1307 1308 1317
|
syl3anc |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x < ( X + ( T - ( X mod T ) ) ) ) |
| 1319 |
1295 1314 1299 1318
|
ltsub1dd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) < ( ( X + ( T - ( X mod T ) ) ) - X ) ) |
| 1320 |
1304
|
recni |
|- ( T - ( X mod T ) ) e. CC |
| 1321 |
|
pncan2 |
|- ( ( X e. CC /\ ( T - ( X mod T ) ) e. CC ) -> ( ( X + ( T - ( X mod T ) ) ) - X ) = ( T - ( X mod T ) ) ) |
| 1322 |
27 1320 1321
|
mp2an |
|- ( ( X + ( T - ( X mod T ) ) ) - X ) = ( T - ( X mod T ) ) |
| 1323 |
|
subge02 |
|- ( ( T e. RR /\ ( X mod T ) e. RR ) -> ( 0 <_ ( X mod T ) <-> ( T - ( X mod T ) ) <_ T ) ) |
| 1324 |
122 767 1323
|
mp2an |
|- ( 0 <_ ( X mod T ) <-> ( T - ( X mod T ) ) <_ T ) |
| 1325 |
950 1324
|
mpbi |
|- ( T - ( X mod T ) ) <_ T |
| 1326 |
1322 1325
|
eqbrtri |
|- ( ( X + ( T - ( X mod T ) ) ) - X ) <_ T |
| 1327 |
1326
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X + ( T - ( X mod T ) ) ) - X ) <_ T ) |
| 1328 |
1300 1315 1316 1319 1327
|
ltletrd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) < T ) |
| 1329 |
1300 1301 1313 1328 1196
|
syl22anc |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( x - X ) mod T ) = ( x - X ) ) |
| 1330 |
1329
|
oveq2d |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( ( x - X ) mod T ) ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1331 |
1330
|
oveq1d |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( ( X mod T ) + ( x - X ) ) mod T ) ) |
| 1332 |
|
readdcl |
|- ( ( ( X mod T ) e. RR /\ ( x - X ) e. RR ) -> ( ( X mod T ) + ( x - X ) ) e. RR ) |
| 1333 |
767 1300 1332
|
sylancr |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) e. RR ) |
| 1334 |
767
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X mod T ) e. RR ) |
| 1335 |
950
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 <_ ( X mod T ) ) |
| 1336 |
1334 1300 1335 1312
|
addgegt0d |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 < ( ( X mod T ) + ( x - X ) ) ) |
| 1337 |
1302 1333 1336
|
ltled |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 <_ ( ( X mod T ) + ( x - X ) ) ) |
| 1338 |
1300 1315 1334 1319
|
ltadd2dd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < ( ( X mod T ) + ( ( X + ( T - ( X mod T ) ) ) - X ) ) ) |
| 1339 |
1322
|
oveq2i |
|- ( ( X mod T ) + ( ( X + ( T - ( X mod T ) ) ) - X ) ) = ( ( X mod T ) + ( T - ( X mod T ) ) ) |
| 1340 |
1036 123
|
pncan3i |
|- ( ( X mod T ) + ( T - ( X mod T ) ) ) = T |
| 1341 |
1339 1340
|
eqtri |
|- ( ( X mod T ) + ( ( X + ( T - ( X mod T ) ) ) - X ) ) = T |
| 1342 |
1338 1341
|
breqtrdi |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < T ) |
| 1343 |
1333 1301 1337 1342 1220
|
syl22anc |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( x - X ) ) mod T ) = ( ( X mod T ) + ( x - X ) ) ) |
| 1344 |
1331 1343
|
eqtr2d |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) ) |
| 1345 |
1299 1300 1301 1223
|
syl3anc |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( X + ( x - X ) ) mod T ) ) |
| 1346 |
27
|
a1i |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X e. CC ) |
| 1347 |
1295
|
recnd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x e. CC ) |
| 1348 |
1346 1347
|
pncan3d |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X + ( x - X ) ) = x ) |
| 1349 |
1348
|
oveq1d |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X + ( x - X ) ) mod T ) = ( x mod T ) ) |
| 1350 |
1344 1345 1349
|
3eqtrd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( x mod T ) ) |
| 1351 |
1350
|
adantl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( x mod T ) ) |
| 1352 |
1333
|
adantl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) e. RR ) |
| 1353 |
1351 1352
|
eqeltrrd |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( x mod T ) e. RR ) |
| 1354 |
767
|
a1i |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( X mod T ) e. RR ) |
| 1355 |
1000
|
adantr |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi <_ ( X mod T ) ) |
| 1356 |
1300 1312
|
elrpd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) e. RR+ ) |
| 1357 |
1334 1356
|
ltaddrpd |
|- ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X mod T ) < ( ( X mod T ) + ( x - X ) ) ) |
| 1358 |
1357
|
adantl |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( X mod T ) < ( ( X mod T ) + ( x - X ) ) ) |
| 1359 |
1298 1354 1352 1355 1358
|
lelttrd |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi < ( ( X mod T ) + ( x - X ) ) ) |
| 1360 |
1298 1352 1359
|
ltled |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi <_ ( ( X mod T ) + ( x - X ) ) ) |
| 1361 |
1360 1351
|
breqtrd |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi <_ ( x mod T ) ) |
| 1362 |
1298 1353 1361
|
lensymd |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> -. ( x mod T ) < _pi ) |
| 1363 |
1362
|
iffalsed |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 1364 |
1297 1363
|
eqtrd |
|- ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( F ` x ) = -u 1 ) |
| 1365 |
1364
|
mpteq2dva |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> ( F ` x ) ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) ) |
| 1366 |
1294 1365
|
eqtr2id |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) = ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) ) |
| 1367 |
1366
|
oveq1d |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) = ( ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) limCC X ) ) |
| 1368 |
209
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> F : RR --> CC ) |
| 1369 |
3
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> X e. RR ) |
| 1370 |
1306
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( X + ( T - ( X mod T ) ) ) e. RR* ) |
| 1371 |
1304
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( T - ( X mod T ) ) e. RR ) |
| 1372 |
962
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( X mod T ) < T ) |
| 1373 |
122
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> T e. RR ) |
| 1374 |
1289 1373
|
posdifd |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( ( X mod T ) < T <-> 0 < ( T - ( X mod T ) ) ) ) |
| 1375 |
1372 1374
|
mpbid |
|- ( ( X mod T ) e. ( _pi [,) T ) -> 0 < ( T - ( X mod T ) ) ) |
| 1376 |
1371 1375
|
elrpd |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( T - ( X mod T ) ) e. RR+ ) |
| 1377 |
1369 1376
|
ltaddrpd |
|- ( ( X mod T ) e. ( _pi [,) T ) -> X < ( X + ( T - ( X mod T ) ) ) ) |
| 1378 |
1276
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ RR ) |
| 1379 |
376
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> +oo e. RR* ) |
| 1380 |
|
ltpnf |
|- ( ( X + ( T - ( X mod T ) ) ) e. RR -> ( X + ( T - ( X mod T ) ) ) < +oo ) |
| 1381 |
|
xrltle |
|- ( ( ( X + ( T - ( X mod T ) ) ) e. RR* /\ +oo e. RR* ) -> ( ( X + ( T - ( X mod T ) ) ) < +oo -> ( X + ( T - ( X mod T ) ) ) <_ +oo ) ) |
| 1382 |
1306 376 1381
|
mp2an |
|- ( ( X + ( T - ( X mod T ) ) ) < +oo -> ( X + ( T - ( X mod T ) ) ) <_ +oo ) |
| 1383 |
1305 1380 1382
|
mp2b |
|- ( X + ( T - ( X mod T ) ) ) <_ +oo |
| 1384 |
1383
|
a1i |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( X + ( T - ( X mod T ) ) ) <_ +oo ) |
| 1385 |
1368 1369 1370 1377 1378 1379 1384
|
limcresioolb |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) limCC X ) = ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 1386 |
1367 1385
|
eqtr2d |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) = ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) ) |
| 1387 |
1281 1292 1386
|
3eltr4d |
|- ( ( X mod T ) e. ( _pi [,) T ) -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 1388 |
1274 1387
|
syl |
|- ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 1389 |
1257 1388
|
pm2.61i |
|- ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) |
| 1390 |
|
id |
|- ( n e. NN0 -> n e. NN0 ) |
| 1391 |
1 2 1390
|
sqwvfoura |
|- ( n e. NN0 -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) = 0 ) |
| 1392 |
1391
|
eqcomd |
|- ( n e. NN0 -> 0 = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 1393 |
1392
|
mpteq2ia |
|- ( n e. NN0 |-> 0 ) = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 1394 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 1395 |
1 2 1394
|
sqwvfourb |
|- ( n e. NN -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) = if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) |
| 1396 |
1395
|
eqcomd |
|- ( n e. NN -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 1397 |
1396
|
mpteq2ia |
|- ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 1398 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 1399 |
|
0red |
|- ( n e. NN -> 0 e. RR ) |
| 1400 |
|
eqid |
|- ( n e. NN0 |-> 0 ) = ( n e. NN0 |-> 0 ) |
| 1401 |
1400
|
fvmpt2 |
|- ( ( n e. NN0 /\ 0 e. RR ) -> ( ( n e. NN0 |-> 0 ) ` n ) = 0 ) |
| 1402 |
1398 1399 1401
|
syl2anc |
|- ( n e. NN -> ( ( n e. NN0 |-> 0 ) ` n ) = 0 ) |
| 1403 |
1402
|
oveq1d |
|- ( n e. NN -> ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) = ( 0 x. ( cos ` ( n x. X ) ) ) ) |
| 1404 |
78
|
coscld |
|- ( n e. NN -> ( cos ` ( n x. X ) ) e. CC ) |
| 1405 |
1404
|
mul02d |
|- ( n e. NN -> ( 0 x. ( cos ` ( n x. X ) ) ) = 0 ) |
| 1406 |
1403 1405
|
eqtrd |
|- ( n e. NN -> ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) = 0 ) |
| 1407 |
|
ovex |
|- ( 4 / ( n x. _pi ) ) e. _V |
| 1408 |
93 1407
|
ifex |
|- if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) e. _V |
| 1409 |
|
eqid |
|- ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) = ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) |
| 1410 |
1409
|
fvmpt2 |
|- ( ( n e. NN /\ if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) e. _V ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) = if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) |
| 1411 |
1408 1410
|
mpan2 |
|- ( n e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) = if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) |
| 1412 |
1411
|
oveq1d |
|- ( n e. NN -> ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) = ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) ) |
| 1413 |
1406 1412
|
oveq12d |
|- ( n e. NN -> ( ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( 0 + ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1414 |
64 76
|
ifcld |
|- ( n e. NN -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) e. CC ) |
| 1415 |
1414 79
|
mulcld |
|- ( n e. NN -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) e. CC ) |
| 1416 |
1415
|
addlidd |
|- ( n e. NN -> ( 0 + ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) ) = ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) ) |
| 1417 |
|
iftrue |
|- ( 2 || n -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) = 0 ) |
| 1418 |
1417
|
oveq1d |
|- ( 2 || n -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = ( 0 x. ( sin ` ( n x. X ) ) ) ) |
| 1419 |
79
|
mul02d |
|- ( n e. NN -> ( 0 x. ( sin ` ( n x. X ) ) ) = 0 ) |
| 1420 |
1418 1419
|
sylan9eqr |
|- ( ( n e. NN /\ 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = 0 ) |
| 1421 |
|
iftrue |
|- ( 2 || n -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = 0 ) |
| 1422 |
1421
|
eqcomd |
|- ( 2 || n -> 0 = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1423 |
1422
|
adantl |
|- ( ( n e. NN /\ 2 || n ) -> 0 = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1424 |
1420 1423
|
eqtrd |
|- ( ( n e. NN /\ 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1425 |
|
iffalse |
|- ( -. 2 || n -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) = ( 4 / ( n x. _pi ) ) ) |
| 1426 |
1425
|
oveq1d |
|- ( -. 2 || n -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) |
| 1427 |
1426
|
adantl |
|- ( ( n e. NN /\ -. 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) |
| 1428 |
|
iffalse |
|- ( -. 2 || n -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) |
| 1429 |
1428
|
eqcomd |
|- ( -. 2 || n -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1430 |
1429
|
adantl |
|- ( ( n e. NN /\ -. 2 || n ) -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1431 |
1427 1430
|
eqtrd |
|- ( ( n e. NN /\ -. 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1432 |
1424 1431
|
pm2.61dan |
|- ( n e. NN -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1433 |
1413 1416 1432
|
3eqtrrd |
|- ( n e. NN -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1434 |
1433
|
mpteq2ia |
|- ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) = ( n e. NN |-> ( ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 1435 |
112 1 149 150 330 605 676 755 3 1137 1389 1393 1397 1434
|
fourierclim |
|- seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) ~~> ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) ) |
| 1436 |
|
0nn0 |
|- 0 e. NN0 |
| 1437 |
|
eqidd |
|- ( n = 0 -> 0 = 0 ) |
| 1438 |
1437 1400 93
|
fvmpt |
|- ( 0 e. NN0 -> ( ( n e. NN0 |-> 0 ) ` 0 ) = 0 ) |
| 1439 |
1436 1438
|
ax-mp |
|- ( ( n e. NN0 |-> 0 ) ` 0 ) = 0 |
| 1440 |
1439
|
oveq1i |
|- ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) = ( 0 / 2 ) |
| 1441 |
32
|
recni |
|- 2 e. CC |
| 1442 |
71 131
|
gtneii |
|- 2 =/= 0 |
| 1443 |
1441 1442
|
div0i |
|- ( 0 / 2 ) = 0 |
| 1444 |
1440 1443
|
eqtri |
|- ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) = 0 |
| 1445 |
1444
|
oveq2i |
|- ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) ) = ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - 0 ) |
| 1446 |
203
|
mptru |
|- 1 e. CC |
| 1447 |
1446 1011
|
ifcli |
|- if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. CC |
| 1448 |
1151
|
recni |
|- if ( ( X mod T ) < _pi , 1 , -u 1 ) e. CC |
| 1449 |
1286 1448
|
eqeltri |
|- ( F ` X ) e. CC |
| 1450 |
1447 1449
|
addcli |
|- ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) e. CC |
| 1451 |
1450 1441 1442
|
divcli |
|- ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) e. CC |
| 1452 |
1451
|
subid1i |
|- ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - 0 ) = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) |
| 1453 |
1445 1452
|
eqtri |
|- ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) ) = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) |
| 1454 |
1435 1453
|
breqtri |
|- seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) |
| 1455 |
1454
|
a1i |
|- ( T. -> seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) ) |
| 1456 |
83 107 1455
|
sumnnodd |
|- ( T. -> ( seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) /\ sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) |
| 1457 |
1456
|
mptru |
|- ( seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) /\ sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) |
| 1458 |
1457
|
simpli |
|- seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) |
| 1459 |
|
breq2 |
|- ( n = ( ( 2 x. k ) - 1 ) -> ( 2 || n <-> 2 || ( ( 2 x. k ) - 1 ) ) ) |
| 1460 |
|
oveq1 |
|- ( n = ( ( 2 x. k ) - 1 ) -> ( n x. _pi ) = ( ( ( 2 x. k ) - 1 ) x. _pi ) ) |
| 1461 |
1460
|
oveq2d |
|- ( n = ( ( 2 x. k ) - 1 ) -> ( 4 / ( n x. _pi ) ) = ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) ) |
| 1462 |
|
oveq1 |
|- ( n = ( ( 2 x. k ) - 1 ) -> ( n x. X ) = ( ( ( 2 x. k ) - 1 ) x. X ) ) |
| 1463 |
1462
|
fveq2d |
|- ( n = ( ( 2 x. k ) - 1 ) -> ( sin ` ( n x. X ) ) = ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) |
| 1464 |
1461 1463
|
oveq12d |
|- ( n = ( ( 2 x. k ) - 1 ) -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) |
| 1465 |
1459 1464
|
ifbieq2d |
|- ( n = ( ( 2 x. k ) - 1 ) -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) ) |
| 1466 |
1465
|
adantl |
|- ( ( k e. NN /\ n = ( ( 2 x. k ) - 1 ) ) -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) ) |
| 1467 |
|
elnnz |
|- ( ( ( 2 x. k ) - 1 ) e. NN <-> ( ( ( 2 x. k ) - 1 ) e. ZZ /\ 0 < ( ( 2 x. k ) - 1 ) ) ) |
| 1468 |
25 52 1467
|
sylanbrc |
|- ( k e. NN -> ( ( 2 x. k ) - 1 ) e. NN ) |
| 1469 |
|
ovex |
|- ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) e. _V |
| 1470 |
93 1469
|
ifex |
|- if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) e. _V |
| 1471 |
1470
|
a1i |
|- ( k e. NN -> if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) e. _V ) |
| 1472 |
84 1466 1468 1471
|
fvmptd |
|- ( k e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) = if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) ) |
| 1473 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. k ) ) |
| 1474 |
20 22 1473
|
sylancr |
|- ( k e. NN -> 2 || ( 2 x. k ) ) |
| 1475 |
23
|
zcnd |
|- ( k e. NN -> ( 2 x. k ) e. CC ) |
| 1476 |
|
1cnd |
|- ( k e. NN -> 1 e. CC ) |
| 1477 |
1475 1476
|
npcand |
|- ( k e. NN -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) |
| 1478 |
1477
|
eqcomd |
|- ( k e. NN -> ( 2 x. k ) = ( ( ( 2 x. k ) - 1 ) + 1 ) ) |
| 1479 |
1474 1478
|
breqtrd |
|- ( k e. NN -> 2 || ( ( ( 2 x. k ) - 1 ) + 1 ) ) |
| 1480 |
|
oddp1even |
|- ( ( ( 2 x. k ) - 1 ) e. ZZ -> ( -. 2 || ( ( 2 x. k ) - 1 ) <-> 2 || ( ( ( 2 x. k ) - 1 ) + 1 ) ) ) |
| 1481 |
25 1480
|
syl |
|- ( k e. NN -> ( -. 2 || ( ( 2 x. k ) - 1 ) <-> 2 || ( ( ( 2 x. k ) - 1 ) + 1 ) ) ) |
| 1482 |
1479 1481
|
mpbird |
|- ( k e. NN -> -. 2 || ( ( 2 x. k ) - 1 ) ) |
| 1483 |
1482
|
iffalsed |
|- ( k e. NN -> if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) = ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) |
| 1484 |
56
|
a1i |
|- ( k e. NN -> _pi e. CC ) |
| 1485 |
26 1484
|
mulcomd |
|- ( k e. NN -> ( ( ( 2 x. k ) - 1 ) x. _pi ) = ( _pi x. ( ( 2 x. k ) - 1 ) ) ) |
| 1486 |
1485
|
oveq2d |
|- ( k e. NN -> ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) = ( 4 / ( _pi x. ( ( 2 x. k ) - 1 ) ) ) ) |
| 1487 |
58
|
a1i |
|- ( k e. NN -> 4 e. CC ) |
| 1488 |
73
|
a1i |
|- ( k e. NN -> _pi =/= 0 ) |
| 1489 |
1487 1484 26 1488 53
|
divdiv1d |
|- ( k e. NN -> ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) = ( 4 / ( _pi x. ( ( 2 x. k ) - 1 ) ) ) ) |
| 1490 |
1486 1489
|
eqtr4d |
|- ( k e. NN -> ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) = ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) ) |
| 1491 |
1490
|
oveq1d |
|- ( k e. NN -> ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) = ( ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) |
| 1492 |
1487 1484 1488
|
divcld |
|- ( k e. NN -> ( 4 / _pi ) e. CC ) |
| 1493 |
1492 26 30 53
|
div32d |
|- ( k e. NN -> ( ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1494 |
1491 1493
|
eqtrd |
|- ( k e. NN -> ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1495 |
1472 1483 1494
|
3eqtrd |
|- ( k e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1496 |
1495
|
mpteq2ia |
|- ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) = ( k e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1497 |
|
oveq2 |
|- ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) |
| 1498 |
1497
|
oveq1d |
|- ( k = n -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. n ) - 1 ) ) |
| 1499 |
1498
|
oveq1d |
|- ( k = n -> ( ( ( 2 x. k ) - 1 ) x. X ) = ( ( ( 2 x. n ) - 1 ) x. X ) ) |
| 1500 |
1499
|
fveq2d |
|- ( k = n -> ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) = ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) ) |
| 1501 |
1500 1498
|
oveq12d |
|- ( k = n -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) |
| 1502 |
1501
|
oveq2d |
|- ( k = n -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) |
| 1503 |
1502
|
cbvmptv |
|- ( k e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) |
| 1504 |
1496 1503
|
eqtri |
|- ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) |
| 1505 |
|
seqeq3 |
|- ( ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) -> seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) ) |
| 1506 |
1504 1505
|
ax-mp |
|- seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) |
| 1507 |
1 2 3 5
|
fourierswlem |
|- Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) |
| 1508 |
1507
|
eqcomi |
|- ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = Y |
| 1509 |
1458 1506 1508
|
3brtr3i |
|- seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) ~~> Y |
| 1510 |
1509
|
a1i |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) ~~> Y ) |
| 1511 |
|
eqid |
|- ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) |
| 1512 |
65 69 74
|
divcld |
|- ( n e. NN -> ( 4 / _pi ) e. CC ) |
| 1513 |
1441
|
a1i |
|- ( n e. NN -> 2 e. CC ) |
| 1514 |
1513 66
|
mulcld |
|- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 1515 |
|
id |
|- ( ( 2 x. n ) e. CC -> ( 2 x. n ) e. CC ) |
| 1516 |
|
1cnd |
|- ( ( 2 x. n ) e. CC -> 1 e. CC ) |
| 1517 |
1515 1516
|
subcld |
|- ( ( 2 x. n ) e. CC -> ( ( 2 x. n ) - 1 ) e. CC ) |
| 1518 |
1514 1517
|
syl |
|- ( n e. NN -> ( ( 2 x. n ) - 1 ) e. CC ) |
| 1519 |
1518 77
|
mulcld |
|- ( n e. NN -> ( ( ( 2 x. n ) - 1 ) x. X ) e. CC ) |
| 1520 |
1519
|
sincld |
|- ( n e. NN -> ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) e. CC ) |
| 1521 |
32
|
a1i |
|- ( n e. NN -> 2 e. RR ) |
| 1522 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 1523 |
1521 1522
|
remulcld |
|- ( n e. NN -> ( 2 x. n ) e. RR ) |
| 1524 |
1523
|
recnd |
|- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 1525 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
| 1526 |
1524 1525
|
subcld |
|- ( n e. NN -> ( ( 2 x. n ) - 1 ) e. CC ) |
| 1527 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
| 1528 |
39 1521
|
eqeltrid |
|- ( n e. NN -> ( 2 x. 1 ) e. RR ) |
| 1529 |
|
1lt2 |
|- 1 < 2 |
| 1530 |
1529
|
a1i |
|- ( n e. NN -> 1 < 2 ) |
| 1531 |
1530 39
|
breqtrrdi |
|- ( n e. NN -> 1 < ( 2 x. 1 ) ) |
| 1532 |
47
|
a1i |
|- ( n e. NN -> 0 <_ 2 ) |
| 1533 |
|
nnge1 |
|- ( n e. NN -> 1 <_ n ) |
| 1534 |
1527 1522 1521 1532 1533
|
lemul2ad |
|- ( n e. NN -> ( 2 x. 1 ) <_ ( 2 x. n ) ) |
| 1535 |
1527 1528 1523 1531 1534
|
ltletrd |
|- ( n e. NN -> 1 < ( 2 x. n ) ) |
| 1536 |
1527 1535
|
gtned |
|- ( n e. NN -> ( 2 x. n ) =/= 1 ) |
| 1537 |
1524 1525 1536
|
subne0d |
|- ( n e. NN -> ( ( 2 x. n ) - 1 ) =/= 0 ) |
| 1538 |
1520 1526 1537
|
divcld |
|- ( n e. NN -> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) e. CC ) |
| 1539 |
1512 1538
|
mulcld |
|- ( n e. NN -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) e. CC ) |
| 1540 |
1511 1539
|
fmpti |
|- ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) : NN --> CC |
| 1541 |
1540
|
a1i |
|- ( T. -> ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) : NN --> CC ) |
| 1542 |
1541
|
ffvelcdmda |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) e. CC ) |
| 1543 |
|
divcan6 |
|- ( ( ( _pi e. CC /\ _pi =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( _pi / 4 ) x. ( 4 / _pi ) ) = 1 ) |
| 1544 |
56 73 58 60 1543
|
mp4an |
|- ( ( _pi / 4 ) x. ( 4 / _pi ) ) = 1 |
| 1545 |
1544
|
eqcomi |
|- 1 = ( ( _pi / 4 ) x. ( 4 / _pi ) ) |
| 1546 |
1545
|
oveq1i |
|- ( 1 x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( ( _pi / 4 ) x. ( 4 / _pi ) ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 1547 |
54
|
mullidd |
|- ( k e. NN -> ( 1 x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 1548 |
60
|
a1i |
|- ( k e. NN -> 4 =/= 0 ) |
| 1549 |
1484 1487 1548
|
divcld |
|- ( k e. NN -> ( _pi / 4 ) e. CC ) |
| 1550 |
1549 1492 54
|
mulassd |
|- ( k e. NN -> ( ( ( _pi / 4 ) x. ( 4 / _pi ) ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) ) |
| 1551 |
1546 1547 1550
|
3eqtr3a |
|- ( k e. NN -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) ) |
| 1552 |
|
eqidd |
|- ( k e. NN -> ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) |
| 1553 |
13
|
oveq2d |
|- ( n = k -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1554 |
1553
|
adantl |
|- ( ( k e. NN /\ n = k ) -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1555 |
1494 1469
|
eqeltrrdi |
|- ( k e. NN -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) e. _V ) |
| 1556 |
1552 1554 15 1555
|
fvmptd |
|- ( k e. NN -> ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) |
| 1557 |
1556
|
oveq2d |
|- ( k e. NN -> ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) = ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) ) |
| 1558 |
1557
|
eqcomd |
|- ( k e. NN -> ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) = ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) ) |
| 1559 |
18 1551 1558
|
3eqtrd |
|- ( k e. NN -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) ) |
| 1560 |
1559
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) ) |
| 1561 |
6 7 62 1510 1542 1560
|
isermulc2 |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) ) |
| 1562 |
|
climrel |
|- Rel ~~> |
| 1563 |
1562
|
releldmi |
|- ( seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) e. dom ~~> ) |
| 1564 |
1561 1563
|
syl |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) e. dom ~~> ) |
| 1565 |
6 7 19 55 1564
|
isumclim2 |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) |
| 1566 |
1565
|
mptru |
|- seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) |
| 1567 |
1561
|
mptru |
|- seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) |
| 1568 |
|
climuni |
|- ( ( seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) /\ seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) ) -> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( _pi / 4 ) x. Y ) ) |
| 1569 |
1566 1567 1568
|
mp2an |
|- sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( _pi / 4 ) x. Y ) |
| 1570 |
1569
|
oveq2i |
|- ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( _pi / 4 ) x. Y ) ) |
| 1571 |
58 56 73
|
divcli |
|- ( 4 / _pi ) e. CC |
| 1572 |
56 58 60
|
divcli |
|- ( _pi / 4 ) e. CC |
| 1573 |
1286 1151
|
eqeltri |
|- ( F ` X ) e. RR |
| 1574 |
71 1573
|
ifcli |
|- if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) e. RR |
| 1575 |
5 1574
|
eqeltri |
|- Y e. RR |
| 1576 |
1575
|
recni |
|- Y e. CC |
| 1577 |
1571 1572 1576
|
mulassi |
|- ( ( ( 4 / _pi ) x. ( _pi / 4 ) ) x. Y ) = ( ( 4 / _pi ) x. ( ( _pi / 4 ) x. Y ) ) |
| 1578 |
1572 1571 1544
|
mulcomli |
|- ( ( 4 / _pi ) x. ( _pi / 4 ) ) = 1 |
| 1579 |
1578
|
oveq1i |
|- ( ( ( 4 / _pi ) x. ( _pi / 4 ) ) x. Y ) = ( 1 x. Y ) |
| 1580 |
1576
|
mullidi |
|- ( 1 x. Y ) = Y |
| 1581 |
1579 1580
|
eqtri |
|- ( ( ( 4 / _pi ) x. ( _pi / 4 ) ) x. Y ) = Y |
| 1582 |
1570 1577 1581
|
3eqtr2i |
|- ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = Y |
| 1583 |
|
seqeq3 |
|- ( S = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) -> seq 1 ( + , S ) = seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) |
| 1584 |
4 1583
|
ax-mp |
|- seq 1 ( + , S ) = seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) |
| 1585 |
1584 1567
|
eqbrtri |
|- seq 1 ( + , S ) ~~> ( ( _pi / 4 ) x. Y ) |
| 1586 |
1582 1585
|
pm3.2i |
|- ( ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = Y /\ seq 1 ( + , S ) ~~> ( ( _pi / 4 ) x. Y ) ) |