| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqwvfourb.t |
|- T = ( 2 x. _pi ) |
| 2 |
|
sqwvfourb.f |
|- F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 3 |
|
sqwvfourb.n |
|- ( ph -> N e. NN ) |
| 4 |
|
pire |
|- _pi e. RR |
| 5 |
4
|
renegcli |
|- -u _pi e. RR |
| 6 |
5
|
a1i |
|- ( ph -> -u _pi e. RR ) |
| 7 |
4
|
a1i |
|- ( ph -> _pi e. RR ) |
| 8 |
|
0re |
|- 0 e. RR |
| 9 |
|
negpilt0 |
|- -u _pi < 0 |
| 10 |
5 8 9
|
ltleii |
|- -u _pi <_ 0 |
| 11 |
|
pipos |
|- 0 < _pi |
| 12 |
8 4 11
|
ltleii |
|- 0 <_ _pi |
| 13 |
5 4
|
elicc2i |
|- ( 0 e. ( -u _pi [,] _pi ) <-> ( 0 e. RR /\ -u _pi <_ 0 /\ 0 <_ _pi ) ) |
| 14 |
8 10 12 13
|
mpbir3an |
|- 0 e. ( -u _pi [,] _pi ) |
| 15 |
14
|
a1i |
|- ( ph -> 0 e. ( -u _pi [,] _pi ) ) |
| 16 |
|
elioore |
|- ( x e. ( -u _pi (,) _pi ) -> x e. RR ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> x e. RR ) |
| 18 |
|
1re |
|- 1 e. RR |
| 19 |
18
|
renegcli |
|- -u 1 e. RR |
| 20 |
18 19
|
ifcli |
|- if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR |
| 21 |
2
|
fvmpt2 |
|- ( ( x e. RR /\ if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 22 |
17 20 21
|
sylancl |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 23 |
20
|
a1i |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) e. CC ) |
| 25 |
22 24
|
eqeltrd |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( F ` x ) e. CC ) |
| 26 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> N e. CC ) |
| 28 |
17
|
recnd |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> x e. CC ) |
| 29 |
27 28
|
mulcld |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( N x. x ) e. CC ) |
| 30 |
29
|
sincld |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( sin ` ( N x. x ) ) e. CC ) |
| 31 |
25 30
|
mulcld |
|- ( ( ph /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) e. CC ) |
| 32 |
|
elioore |
|- ( x e. ( -u _pi (,) 0 ) -> x e. RR ) |
| 33 |
32 20 21
|
sylancl |
|- ( x e. ( -u _pi (,) 0 ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 34 |
4
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> _pi e. RR ) |
| 35 |
|
2rp |
|- 2 e. RR+ |
| 36 |
|
pirp |
|- _pi e. RR+ |
| 37 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
| 38 |
35 36 37
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
| 39 |
1 38
|
eqeltri |
|- T e. RR+ |
| 40 |
39
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. RR+ ) |
| 41 |
32 40
|
modcld |
|- ( x e. ( -u _pi (,) 0 ) -> ( x mod T ) e. RR ) |
| 42 |
|
picn |
|- _pi e. CC |
| 43 |
42
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
| 44 |
1 43
|
eqtri |
|- T = ( _pi + _pi ) |
| 45 |
44
|
oveq2i |
|- ( -u _pi + T ) = ( -u _pi + ( _pi + _pi ) ) |
| 46 |
5
|
recni |
|- -u _pi e. CC |
| 47 |
46 42 42
|
addassi |
|- ( ( -u _pi + _pi ) + _pi ) = ( -u _pi + ( _pi + _pi ) ) |
| 48 |
42
|
negidi |
|- ( _pi + -u _pi ) = 0 |
| 49 |
42 46 48
|
addcomli |
|- ( -u _pi + _pi ) = 0 |
| 50 |
49
|
oveq1i |
|- ( ( -u _pi + _pi ) + _pi ) = ( 0 + _pi ) |
| 51 |
42
|
addlidi |
|- ( 0 + _pi ) = _pi |
| 52 |
50 51
|
eqtri |
|- ( ( -u _pi + _pi ) + _pi ) = _pi |
| 53 |
45 47 52
|
3eqtr2ri |
|- _pi = ( -u _pi + T ) |
| 54 |
53
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> _pi = ( -u _pi + T ) ) |
| 55 |
5
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi e. RR ) |
| 56 |
|
2re |
|- 2 e. RR |
| 57 |
56 4
|
remulcli |
|- ( 2 x. _pi ) e. RR |
| 58 |
1 57
|
eqeltri |
|- T e. RR |
| 59 |
58
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> T e. RR ) |
| 60 |
5
|
rexri |
|- -u _pi e. RR* |
| 61 |
|
0xr |
|- 0 e. RR* |
| 62 |
|
ioogtlb |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ x e. ( -u _pi (,) 0 ) ) -> -u _pi < x ) |
| 63 |
60 61 62
|
mp3an12 |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi < x ) |
| 64 |
55 32 59 63
|
ltadd1dd |
|- ( x e. ( -u _pi (,) 0 ) -> ( -u _pi + T ) < ( x + T ) ) |
| 65 |
54 64
|
eqbrtrd |
|- ( x e. ( -u _pi (,) 0 ) -> _pi < ( x + T ) ) |
| 66 |
58
|
recni |
|- T e. CC |
| 67 |
66
|
mullidi |
|- ( 1 x. T ) = T |
| 68 |
67
|
eqcomi |
|- T = ( 1 x. T ) |
| 69 |
68
|
oveq2i |
|- ( x + T ) = ( x + ( 1 x. T ) ) |
| 70 |
69
|
oveq1i |
|- ( ( x + T ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) |
| 71 |
32 59
|
readdcld |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) e. RR ) |
| 72 |
|
0red |
|- ( x e. ( -u _pi (,) 0 ) -> 0 e. RR ) |
| 73 |
11
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < _pi ) |
| 74 |
72 34 71 73 65
|
lttrd |
|- ( x e. ( -u _pi (,) 0 ) -> 0 < ( x + T ) ) |
| 75 |
72 71 74
|
ltled |
|- ( x e. ( -u _pi (,) 0 ) -> 0 <_ ( x + T ) ) |
| 76 |
|
iooltub |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ x e. ( -u _pi (,) 0 ) ) -> x < 0 ) |
| 77 |
60 61 76
|
mp3an12 |
|- ( x e. ( -u _pi (,) 0 ) -> x < 0 ) |
| 78 |
32 72 59 77
|
ltadd1dd |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) < ( 0 + T ) ) |
| 79 |
59
|
recnd |
|- ( x e. ( -u _pi (,) 0 ) -> T e. CC ) |
| 80 |
79
|
addlidd |
|- ( x e. ( -u _pi (,) 0 ) -> ( 0 + T ) = T ) |
| 81 |
78 80
|
breqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) < T ) |
| 82 |
|
modid |
|- ( ( ( ( x + T ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) -> ( ( x + T ) mod T ) = ( x + T ) ) |
| 83 |
71 40 75 81 82
|
syl22anc |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( x + T ) mod T ) = ( x + T ) ) |
| 84 |
|
1zzd |
|- ( x e. ( -u _pi (,) 0 ) -> 1 e. ZZ ) |
| 85 |
|
modcyc |
|- ( ( x e. RR /\ T e. RR+ /\ 1 e. ZZ ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
| 86 |
32 40 84 85
|
syl3anc |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) ) |
| 87 |
70 83 86
|
3eqtr3a |
|- ( x e. ( -u _pi (,) 0 ) -> ( x + T ) = ( x mod T ) ) |
| 88 |
65 87
|
breqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> _pi < ( x mod T ) ) |
| 89 |
34 41 88
|
ltnsymd |
|- ( x e. ( -u _pi (,) 0 ) -> -. ( x mod T ) < _pi ) |
| 90 |
89
|
iffalsed |
|- ( x e. ( -u _pi (,) 0 ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 ) |
| 91 |
33 90
|
eqtrd |
|- ( x e. ( -u _pi (,) 0 ) -> ( F ` x ) = -u 1 ) |
| 92 |
91
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( F ` x ) = -u 1 ) |
| 93 |
92
|
oveq1d |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( -u 1 x. ( sin ` ( N x. x ) ) ) ) |
| 94 |
93
|
mpteq2dva |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) ) = ( x e. ( -u _pi (,) 0 ) |-> ( -u 1 x. ( sin ` ( N x. x ) ) ) ) ) |
| 95 |
|
neg1cn |
|- -u 1 e. CC |
| 96 |
95
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 97 |
3
|
nnred |
|- ( ph -> N e. RR ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> N e. RR ) |
| 99 |
32
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> x e. RR ) |
| 100 |
98 99
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( N x. x ) e. RR ) |
| 101 |
100
|
resincld |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( sin ` ( N x. x ) ) e. RR ) |
| 102 |
|
ioossicc |
|- ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) |
| 103 |
102
|
a1i |
|- ( ph -> ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) ) |
| 104 |
|
ioombl |
|- ( -u _pi (,) 0 ) e. dom vol |
| 105 |
104
|
a1i |
|- ( ph -> ( -u _pi (,) 0 ) e. dom vol ) |
| 106 |
97
|
adantr |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> N e. RR ) |
| 107 |
|
iccssre |
|- ( ( -u _pi e. RR /\ 0 e. RR ) -> ( -u _pi [,] 0 ) C_ RR ) |
| 108 |
5 8 107
|
mp2an |
|- ( -u _pi [,] 0 ) C_ RR |
| 109 |
108
|
sseli |
|- ( x e. ( -u _pi [,] 0 ) -> x e. RR ) |
| 110 |
109
|
adantl |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> x e. RR ) |
| 111 |
106 110
|
remulcld |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> ( N x. x ) e. RR ) |
| 112 |
111
|
resincld |
|- ( ( ph /\ x e. ( -u _pi [,] 0 ) ) -> ( sin ` ( N x. x ) ) e. RR ) |
| 113 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 114 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 115 |
114
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 116 |
|
ax-resscn |
|- RR C_ CC |
| 117 |
108 116
|
sstri |
|- ( -u _pi [,] 0 ) C_ CC |
| 118 |
117
|
a1i |
|- ( ph -> ( -u _pi [,] 0 ) C_ CC ) |
| 119 |
|
ssid |
|- CC C_ CC |
| 120 |
119
|
a1i |
|- ( ph -> CC C_ CC ) |
| 121 |
118 26 120
|
constcncfg |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> N ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
| 122 |
118 120
|
idcncfg |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> x ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
| 123 |
121 122
|
mulcncf |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> ( N x. x ) ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
| 124 |
115 123
|
cncfmpt1f |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> ( sin ` ( N x. x ) ) ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) |
| 125 |
|
cniccibl |
|- ( ( -u _pi e. RR /\ 0 e. RR /\ ( x e. ( -u _pi [,] 0 ) |-> ( sin ` ( N x. x ) ) ) e. ( ( -u _pi [,] 0 ) -cn-> CC ) ) -> ( x e. ( -u _pi [,] 0 ) |-> ( sin ` ( N x. x ) ) ) e. L^1 ) |
| 126 |
6 113 124 125
|
syl3anc |
|- ( ph -> ( x e. ( -u _pi [,] 0 ) |-> ( sin ` ( N x. x ) ) ) e. L^1 ) |
| 127 |
103 105 112 126
|
iblss |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( sin ` ( N x. x ) ) ) e. L^1 ) |
| 128 |
96 101 127
|
iblmulc2 |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( -u 1 x. ( sin ` ( N x. x ) ) ) ) e. L^1 ) |
| 129 |
94 128
|
eqeltrd |
|- ( ph -> ( x e. ( -u _pi (,) 0 ) |-> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) ) e. L^1 ) |
| 130 |
60
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> -u _pi e. RR* ) |
| 131 |
4
|
rexri |
|- _pi e. RR* |
| 132 |
131
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi e. RR* ) |
| 133 |
|
elioore |
|- ( x e. ( 0 (,) _pi ) -> x e. RR ) |
| 134 |
5
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> -u _pi e. RR ) |
| 135 |
|
0red |
|- ( x e. ( 0 (,) _pi ) -> 0 e. RR ) |
| 136 |
9
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> -u _pi < 0 ) |
| 137 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ x e. ( 0 (,) _pi ) ) -> 0 < x ) |
| 138 |
61 131 137
|
mp3an12 |
|- ( x e. ( 0 (,) _pi ) -> 0 < x ) |
| 139 |
134 135 133 136 138
|
lttrd |
|- ( x e. ( 0 (,) _pi ) -> -u _pi < x ) |
| 140 |
|
iooltub |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ x e. ( 0 (,) _pi ) ) -> x < _pi ) |
| 141 |
61 131 140
|
mp3an12 |
|- ( x e. ( 0 (,) _pi ) -> x < _pi ) |
| 142 |
130 132 133 139 141
|
eliood |
|- ( x e. ( 0 (,) _pi ) -> x e. ( -u _pi (,) _pi ) ) |
| 143 |
142 22
|
sylan2 |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 144 |
39
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> T e. RR+ ) |
| 145 |
135 133 138
|
ltled |
|- ( x e. ( 0 (,) _pi ) -> 0 <_ x ) |
| 146 |
4
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi e. RR ) |
| 147 |
58
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> T e. RR ) |
| 148 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
| 149 |
36 148
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
| 150 |
149 1
|
breqtrri |
|- _pi < T |
| 151 |
150
|
a1i |
|- ( x e. ( 0 (,) _pi ) -> _pi < T ) |
| 152 |
133 146 147 141 151
|
lttrd |
|- ( x e. ( 0 (,) _pi ) -> x < T ) |
| 153 |
|
modid |
|- ( ( ( x e. RR /\ T e. RR+ ) /\ ( 0 <_ x /\ x < T ) ) -> ( x mod T ) = x ) |
| 154 |
133 144 145 152 153
|
syl22anc |
|- ( x e. ( 0 (,) _pi ) -> ( x mod T ) = x ) |
| 155 |
154 141
|
eqbrtrd |
|- ( x e. ( 0 (,) _pi ) -> ( x mod T ) < _pi ) |
| 156 |
155
|
iftrued |
|- ( x e. ( 0 (,) _pi ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 157 |
156
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 ) |
| 158 |
143 157
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( F ` x ) = 1 ) |
| 159 |
158
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( 1 x. ( sin ` ( N x. x ) ) ) ) |
| 160 |
142 30
|
sylan2 |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` ( N x. x ) ) e. CC ) |
| 161 |
160
|
mullidd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( 1 x. ( sin ` ( N x. x ) ) ) = ( sin ` ( N x. x ) ) ) |
| 162 |
159 161
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( sin ` ( N x. x ) ) ) |
| 163 |
162
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` ( N x. x ) ) ) ) |
| 164 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
| 165 |
164
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 166 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
| 167 |
166
|
a1i |
|- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
| 168 |
97
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. RR ) |
| 169 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
| 170 |
8 4 169
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
| 171 |
170
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. RR ) |
| 172 |
171
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. RR ) |
| 173 |
168 172
|
remulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N x. x ) e. RR ) |
| 174 |
173
|
resincld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` ( N x. x ) ) e. RR ) |
| 175 |
170 116
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
| 176 |
175
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ CC ) |
| 177 |
176 26 120
|
constcncfg |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> N ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 178 |
176 120
|
idcncfg |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> x ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 179 |
177 178
|
mulcncf |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( N x. x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 180 |
115 179
|
cncfmpt1f |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( sin ` ( N x. x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 181 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( sin ` ( N x. x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( sin ` ( N x. x ) ) ) e. L^1 ) |
| 182 |
113 7 180 181
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( sin ` ( N x. x ) ) ) e. L^1 ) |
| 183 |
165 167 174 182
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( sin ` ( N x. x ) ) ) e. L^1 ) |
| 184 |
163 183
|
eqeltrd |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) ) e. L^1 ) |
| 185 |
6 7 15 31 129 184
|
itgsplitioo |
|- ( ph -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x = ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x ) ) |
| 186 |
185
|
oveq1d |
|- ( ph -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x / _pi ) = ( ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x ) / _pi ) ) |
| 187 |
91
|
oveq1d |
|- ( x e. ( -u _pi (,) 0 ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( -u 1 x. ( sin ` ( N x. x ) ) ) ) |
| 188 |
187
|
adantl |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( -u 1 x. ( sin ` ( N x. x ) ) ) ) |
| 189 |
60
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> -u _pi e. RR* ) |
| 190 |
131
|
a1i |
|- ( x e. ( -u _pi (,) 0 ) -> _pi e. RR* ) |
| 191 |
32 72 34 77 73
|
lttrd |
|- ( x e. ( -u _pi (,) 0 ) -> x < _pi ) |
| 192 |
189 190 32 63 191
|
eliood |
|- ( x e. ( -u _pi (,) 0 ) -> x e. ( -u _pi (,) _pi ) ) |
| 193 |
192 30
|
sylan2 |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( sin ` ( N x. x ) ) e. CC ) |
| 194 |
193
|
mulm1d |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( -u 1 x. ( sin ` ( N x. x ) ) ) = -u ( sin ` ( N x. x ) ) ) |
| 195 |
188 194
|
eqtrd |
|- ( ( ph /\ x e. ( -u _pi (,) 0 ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = -u ( sin ` ( N x. x ) ) ) |
| 196 |
195
|
itgeq2dv |
|- ( ph -> S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x = S. ( -u _pi (,) 0 ) -u ( sin ` ( N x. x ) ) _d x ) |
| 197 |
101 127
|
itgneg |
|- ( ph -> -u S. ( -u _pi (,) 0 ) ( sin ` ( N x. x ) ) _d x = S. ( -u _pi (,) 0 ) -u ( sin ` ( N x. x ) ) _d x ) |
| 198 |
3
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 199 |
10
|
a1i |
|- ( ph -> -u _pi <_ 0 ) |
| 200 |
26 198 6 113 199
|
itgsincmulx |
|- ( ph -> S. ( -u _pi (,) 0 ) ( sin ` ( N x. x ) ) _d x = ( ( ( cos ` ( N x. -u _pi ) ) - ( cos ` ( N x. 0 ) ) ) / N ) ) |
| 201 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 202 |
|
cosknegpi |
|- ( N e. ZZ -> ( cos ` ( N x. -u _pi ) ) = if ( 2 || N , 1 , -u 1 ) ) |
| 203 |
201 202
|
syl |
|- ( ph -> ( cos ` ( N x. -u _pi ) ) = if ( 2 || N , 1 , -u 1 ) ) |
| 204 |
26
|
mul01d |
|- ( ph -> ( N x. 0 ) = 0 ) |
| 205 |
204
|
fveq2d |
|- ( ph -> ( cos ` ( N x. 0 ) ) = ( cos ` 0 ) ) |
| 206 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
| 207 |
205 206
|
eqtrdi |
|- ( ph -> ( cos ` ( N x. 0 ) ) = 1 ) |
| 208 |
203 207
|
oveq12d |
|- ( ph -> ( ( cos ` ( N x. -u _pi ) ) - ( cos ` ( N x. 0 ) ) ) = ( if ( 2 || N , 1 , -u 1 ) - 1 ) ) |
| 209 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 210 |
|
iftrue |
|- ( 2 || N -> if ( 2 || N , 1 , -u 1 ) = 1 ) |
| 211 |
210
|
oveq1d |
|- ( 2 || N -> ( if ( 2 || N , 1 , -u 1 ) - 1 ) = ( 1 - 1 ) ) |
| 212 |
|
iftrue |
|- ( 2 || N -> if ( 2 || N , 0 , -u 2 ) = 0 ) |
| 213 |
209 211 212
|
3eqtr4a |
|- ( 2 || N -> ( if ( 2 || N , 1 , -u 1 ) - 1 ) = if ( 2 || N , 0 , -u 2 ) ) |
| 214 |
|
iffalse |
|- ( -. 2 || N -> if ( 2 || N , 1 , -u 1 ) = -u 1 ) |
| 215 |
214
|
oveq1d |
|- ( -. 2 || N -> ( if ( 2 || N , 1 , -u 1 ) - 1 ) = ( -u 1 - 1 ) ) |
| 216 |
|
ax-1cn |
|- 1 e. CC |
| 217 |
|
negdi2 |
|- ( ( 1 e. CC /\ 1 e. CC ) -> -u ( 1 + 1 ) = ( -u 1 - 1 ) ) |
| 218 |
216 216 217
|
mp2an |
|- -u ( 1 + 1 ) = ( -u 1 - 1 ) |
| 219 |
218
|
eqcomi |
|- ( -u 1 - 1 ) = -u ( 1 + 1 ) |
| 220 |
219
|
a1i |
|- ( -. 2 || N -> ( -u 1 - 1 ) = -u ( 1 + 1 ) ) |
| 221 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 222 |
221
|
negeqi |
|- -u ( 1 + 1 ) = -u 2 |
| 223 |
|
iffalse |
|- ( -. 2 || N -> if ( 2 || N , 0 , -u 2 ) = -u 2 ) |
| 224 |
222 223
|
eqtr4id |
|- ( -. 2 || N -> -u ( 1 + 1 ) = if ( 2 || N , 0 , -u 2 ) ) |
| 225 |
215 220 224
|
3eqtrd |
|- ( -. 2 || N -> ( if ( 2 || N , 1 , -u 1 ) - 1 ) = if ( 2 || N , 0 , -u 2 ) ) |
| 226 |
213 225
|
pm2.61i |
|- ( if ( 2 || N , 1 , -u 1 ) - 1 ) = if ( 2 || N , 0 , -u 2 ) |
| 227 |
208 226
|
eqtrdi |
|- ( ph -> ( ( cos ` ( N x. -u _pi ) ) - ( cos ` ( N x. 0 ) ) ) = if ( 2 || N , 0 , -u 2 ) ) |
| 228 |
227
|
oveq1d |
|- ( ph -> ( ( ( cos ` ( N x. -u _pi ) ) - ( cos ` ( N x. 0 ) ) ) / N ) = ( if ( 2 || N , 0 , -u 2 ) / N ) ) |
| 229 |
200 228
|
eqtrd |
|- ( ph -> S. ( -u _pi (,) 0 ) ( sin ` ( N x. x ) ) _d x = ( if ( 2 || N , 0 , -u 2 ) / N ) ) |
| 230 |
229
|
negeqd |
|- ( ph -> -u S. ( -u _pi (,) 0 ) ( sin ` ( N x. x ) ) _d x = -u ( if ( 2 || N , 0 , -u 2 ) / N ) ) |
| 231 |
|
0cn |
|- 0 e. CC |
| 232 |
|
2cn |
|- 2 e. CC |
| 233 |
232
|
negcli |
|- -u 2 e. CC |
| 234 |
231 233
|
ifcli |
|- if ( 2 || N , 0 , -u 2 ) e. CC |
| 235 |
234
|
a1i |
|- ( ph -> if ( 2 || N , 0 , -u 2 ) e. CC ) |
| 236 |
235 26 198
|
divnegd |
|- ( ph -> -u ( if ( 2 || N , 0 , -u 2 ) / N ) = ( -u if ( 2 || N , 0 , -u 2 ) / N ) ) |
| 237 |
|
neg0 |
|- -u 0 = 0 |
| 238 |
212
|
negeqd |
|- ( 2 || N -> -u if ( 2 || N , 0 , -u 2 ) = -u 0 ) |
| 239 |
|
iftrue |
|- ( 2 || N -> if ( 2 || N , 0 , 2 ) = 0 ) |
| 240 |
237 238 239
|
3eqtr4a |
|- ( 2 || N -> -u if ( 2 || N , 0 , -u 2 ) = if ( 2 || N , 0 , 2 ) ) |
| 241 |
232
|
negnegi |
|- -u -u 2 = 2 |
| 242 |
223
|
negeqd |
|- ( -. 2 || N -> -u if ( 2 || N , 0 , -u 2 ) = -u -u 2 ) |
| 243 |
|
iffalse |
|- ( -. 2 || N -> if ( 2 || N , 0 , 2 ) = 2 ) |
| 244 |
241 242 243
|
3eqtr4a |
|- ( -. 2 || N -> -u if ( 2 || N , 0 , -u 2 ) = if ( 2 || N , 0 , 2 ) ) |
| 245 |
240 244
|
pm2.61i |
|- -u if ( 2 || N , 0 , -u 2 ) = if ( 2 || N , 0 , 2 ) |
| 246 |
245
|
oveq1i |
|- ( -u if ( 2 || N , 0 , -u 2 ) / N ) = ( if ( 2 || N , 0 , 2 ) / N ) |
| 247 |
246
|
a1i |
|- ( ph -> ( -u if ( 2 || N , 0 , -u 2 ) / N ) = ( if ( 2 || N , 0 , 2 ) / N ) ) |
| 248 |
230 236 247
|
3eqtrd |
|- ( ph -> -u S. ( -u _pi (,) 0 ) ( sin ` ( N x. x ) ) _d x = ( if ( 2 || N , 0 , 2 ) / N ) ) |
| 249 |
196 197 248
|
3eqtr2d |
|- ( ph -> S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x = ( if ( 2 || N , 0 , 2 ) / N ) ) |
| 250 |
133 20 21
|
sylancl |
|- ( x e. ( 0 (,) _pi ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |
| 251 |
250 156
|
eqtrd |
|- ( x e. ( 0 (,) _pi ) -> ( F ` x ) = 1 ) |
| 252 |
251
|
oveq1d |
|- ( x e. ( 0 (,) _pi ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( 1 x. ( sin ` ( N x. x ) ) ) ) |
| 253 |
252
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( 1 x. ( sin ` ( N x. x ) ) ) ) |
| 254 |
253 161
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) = ( sin ` ( N x. x ) ) ) |
| 255 |
254
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x = S. ( 0 (,) _pi ) ( sin ` ( N x. x ) ) _d x ) |
| 256 |
12
|
a1i |
|- ( ph -> 0 <_ _pi ) |
| 257 |
26 198 113 7 256
|
itgsincmulx |
|- ( ph -> S. ( 0 (,) _pi ) ( sin ` ( N x. x ) ) _d x = ( ( ( cos ` ( N x. 0 ) ) - ( cos ` ( N x. _pi ) ) ) / N ) ) |
| 258 |
|
coskpi2 |
|- ( N e. ZZ -> ( cos ` ( N x. _pi ) ) = if ( 2 || N , 1 , -u 1 ) ) |
| 259 |
201 258
|
syl |
|- ( ph -> ( cos ` ( N x. _pi ) ) = if ( 2 || N , 1 , -u 1 ) ) |
| 260 |
207 259
|
oveq12d |
|- ( ph -> ( ( cos ` ( N x. 0 ) ) - ( cos ` ( N x. _pi ) ) ) = ( 1 - if ( 2 || N , 1 , -u 1 ) ) ) |
| 261 |
210
|
oveq2d |
|- ( 2 || N -> ( 1 - if ( 2 || N , 1 , -u 1 ) ) = ( 1 - 1 ) ) |
| 262 |
209 261 239
|
3eqtr4a |
|- ( 2 || N -> ( 1 - if ( 2 || N , 1 , -u 1 ) ) = if ( 2 || N , 0 , 2 ) ) |
| 263 |
214
|
oveq2d |
|- ( -. 2 || N -> ( 1 - if ( 2 || N , 1 , -u 1 ) ) = ( 1 - -u 1 ) ) |
| 264 |
216 216
|
subnegi |
|- ( 1 - -u 1 ) = ( 1 + 1 ) |
| 265 |
264
|
a1i |
|- ( -. 2 || N -> ( 1 - -u 1 ) = ( 1 + 1 ) ) |
| 266 |
221 243
|
eqtr4id |
|- ( -. 2 || N -> ( 1 + 1 ) = if ( 2 || N , 0 , 2 ) ) |
| 267 |
263 265 266
|
3eqtrd |
|- ( -. 2 || N -> ( 1 - if ( 2 || N , 1 , -u 1 ) ) = if ( 2 || N , 0 , 2 ) ) |
| 268 |
262 267
|
pm2.61i |
|- ( 1 - if ( 2 || N , 1 , -u 1 ) ) = if ( 2 || N , 0 , 2 ) |
| 269 |
260 268
|
eqtrdi |
|- ( ph -> ( ( cos ` ( N x. 0 ) ) - ( cos ` ( N x. _pi ) ) ) = if ( 2 || N , 0 , 2 ) ) |
| 270 |
269
|
oveq1d |
|- ( ph -> ( ( ( cos ` ( N x. 0 ) ) - ( cos ` ( N x. _pi ) ) ) / N ) = ( if ( 2 || N , 0 , 2 ) / N ) ) |
| 271 |
255 257 270
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x = ( if ( 2 || N , 0 , 2 ) / N ) ) |
| 272 |
249 271
|
oveq12d |
|- ( ph -> ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x ) = ( ( if ( 2 || N , 0 , 2 ) / N ) + ( if ( 2 || N , 0 , 2 ) / N ) ) ) |
| 273 |
231 232
|
ifcli |
|- if ( 2 || N , 0 , 2 ) e. CC |
| 274 |
273
|
a1i |
|- ( ph -> if ( 2 || N , 0 , 2 ) e. CC ) |
| 275 |
274 274 26 198
|
divdird |
|- ( ph -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = ( ( if ( 2 || N , 0 , 2 ) / N ) + ( if ( 2 || N , 0 , 2 ) / N ) ) ) |
| 276 |
239 239
|
oveq12d |
|- ( 2 || N -> ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) = ( 0 + 0 ) ) |
| 277 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 278 |
276 277
|
eqtrdi |
|- ( 2 || N -> ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) = 0 ) |
| 279 |
278
|
oveq1d |
|- ( 2 || N -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = ( 0 / N ) ) |
| 280 |
279
|
adantl |
|- ( ( ph /\ 2 || N ) -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = ( 0 / N ) ) |
| 281 |
26 198
|
div0d |
|- ( ph -> ( 0 / N ) = 0 ) |
| 282 |
281
|
adantr |
|- ( ( ph /\ 2 || N ) -> ( 0 / N ) = 0 ) |
| 283 |
|
iftrue |
|- ( 2 || N -> if ( 2 || N , 0 , ( 4 / N ) ) = 0 ) |
| 284 |
283
|
eqcomd |
|- ( 2 || N -> 0 = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 285 |
284
|
adantl |
|- ( ( ph /\ 2 || N ) -> 0 = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 286 |
280 282 285
|
3eqtrd |
|- ( ( ph /\ 2 || N ) -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 287 |
243 243
|
oveq12d |
|- ( -. 2 || N -> ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) = ( 2 + 2 ) ) |
| 288 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
| 289 |
287 288
|
eqtrdi |
|- ( -. 2 || N -> ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) = 4 ) |
| 290 |
289
|
oveq1d |
|- ( -. 2 || N -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = ( 4 / N ) ) |
| 291 |
|
iffalse |
|- ( -. 2 || N -> if ( 2 || N , 0 , ( 4 / N ) ) = ( 4 / N ) ) |
| 292 |
290 291
|
eqtr4d |
|- ( -. 2 || N -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 293 |
292
|
adantl |
|- ( ( ph /\ -. 2 || N ) -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 294 |
286 293
|
pm2.61dan |
|- ( ph -> ( ( if ( 2 || N , 0 , 2 ) + if ( 2 || N , 0 , 2 ) ) / N ) = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 295 |
272 275 294
|
3eqtr2d |
|- ( ph -> ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x ) = if ( 2 || N , 0 , ( 4 / N ) ) ) |
| 296 |
295
|
oveq1d |
|- ( ph -> ( ( S. ( -u _pi (,) 0 ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x + S. ( 0 (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x ) / _pi ) = ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) ) |
| 297 |
283
|
oveq1d |
|- ( 2 || N -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = ( 0 / _pi ) ) |
| 298 |
297
|
adantl |
|- ( ( ph /\ 2 || N ) -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = ( 0 / _pi ) ) |
| 299 |
8 11
|
gtneii |
|- _pi =/= 0 |
| 300 |
42 299
|
div0i |
|- ( 0 / _pi ) = 0 |
| 301 |
300
|
a1i |
|- ( ( ph /\ 2 || N ) -> ( 0 / _pi ) = 0 ) |
| 302 |
|
iftrue |
|- ( 2 || N -> if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) = 0 ) |
| 303 |
302
|
eqcomd |
|- ( 2 || N -> 0 = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 304 |
303
|
adantl |
|- ( ( ph /\ 2 || N ) -> 0 = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 305 |
298 301 304
|
3eqtrd |
|- ( ( ph /\ 2 || N ) -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 306 |
291
|
oveq1d |
|- ( -. 2 || N -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = ( ( 4 / N ) / _pi ) ) |
| 307 |
306
|
adantl |
|- ( ( ph /\ -. 2 || N ) -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = ( ( 4 / N ) / _pi ) ) |
| 308 |
|
4cn |
|- 4 e. CC |
| 309 |
308
|
a1i |
|- ( ph -> 4 e. CC ) |
| 310 |
42
|
a1i |
|- ( ph -> _pi e. CC ) |
| 311 |
299
|
a1i |
|- ( ph -> _pi =/= 0 ) |
| 312 |
309 26 310 198 311
|
divdiv1d |
|- ( ph -> ( ( 4 / N ) / _pi ) = ( 4 / ( N x. _pi ) ) ) |
| 313 |
312
|
adantr |
|- ( ( ph /\ -. 2 || N ) -> ( ( 4 / N ) / _pi ) = ( 4 / ( N x. _pi ) ) ) |
| 314 |
|
iffalse |
|- ( -. 2 || N -> if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) = ( 4 / ( N x. _pi ) ) ) |
| 315 |
314
|
eqcomd |
|- ( -. 2 || N -> ( 4 / ( N x. _pi ) ) = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 316 |
315
|
adantl |
|- ( ( ph /\ -. 2 || N ) -> ( 4 / ( N x. _pi ) ) = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 317 |
307 313 316
|
3eqtrd |
|- ( ( ph /\ -. 2 || N ) -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 318 |
305 317
|
pm2.61dan |
|- ( ph -> ( if ( 2 || N , 0 , ( 4 / N ) ) / _pi ) = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |
| 319 |
186 296 318
|
3eqtrd |
|- ( ph -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( N x. x ) ) ) _d x / _pi ) = if ( 2 || N , 0 , ( 4 / ( N x. _pi ) ) ) ) |