Metamath Proof Explorer


Theorem iundom2g

Description: An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. B depends on x and should be thought of as B ( x ) . (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses iunfo.1 𝑇 = 𝑥𝐴 ( { 𝑥 } × 𝐵 )
iundomg.2 ( 𝜑 𝑥𝐴 ( 𝐶m 𝐵 ) ∈ AC 𝐴 )
iundomg.3 ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
Assertion iundom2g ( 𝜑𝑇 ≼ ( 𝐴 × 𝐶 ) )

Proof

Step Hyp Ref Expression
1 iunfo.1 𝑇 = 𝑥𝐴 ( { 𝑥 } × 𝐵 )
2 iundomg.2 ( 𝜑 𝑥𝐴 ( 𝐶m 𝐵 ) ∈ AC 𝐴 )
3 iundomg.3 ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
4 brdomi ( 𝐵𝐶 → ∃ 𝑔 𝑔 : 𝐵1-1𝐶 )
5 4 adantl ( ( 𝑥𝐴𝐵𝐶 ) → ∃ 𝑔 𝑔 : 𝐵1-1𝐶 )
6 f1f ( 𝑔 : 𝐵1-1𝐶𝑔 : 𝐵𝐶 )
7 reldom Rel ≼
8 7 brrelex2i ( 𝐵𝐶𝐶 ∈ V )
9 7 brrelex1i ( 𝐵𝐶𝐵 ∈ V )
10 8 9 elmapd ( 𝐵𝐶 → ( 𝑔 ∈ ( 𝐶m 𝐵 ) ↔ 𝑔 : 𝐵𝐶 ) )
11 10 adantl ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝑔 ∈ ( 𝐶m 𝐵 ) ↔ 𝑔 : 𝐵𝐶 ) )
12 6 11 syl5ibr ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝑔 : 𝐵1-1𝐶𝑔 ∈ ( 𝐶m 𝐵 ) ) )
13 ssiun2 ( 𝑥𝐴 → ( 𝐶m 𝐵 ) ⊆ 𝑥𝐴 ( 𝐶m 𝐵 ) )
14 13 adantr ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝐶m 𝐵 ) ⊆ 𝑥𝐴 ( 𝐶m 𝐵 ) )
15 14 sseld ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝑔 ∈ ( 𝐶m 𝐵 ) → 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) ) )
16 12 15 syld ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝑔 : 𝐵1-1𝐶𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) ) )
17 16 ancrd ( ( 𝑥𝐴𝐵𝐶 ) → ( 𝑔 : 𝐵1-1𝐶 → ( 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ 𝑔 : 𝐵1-1𝐶 ) ) )
18 17 eximdv ( ( 𝑥𝐴𝐵𝐶 ) → ( ∃ 𝑔 𝑔 : 𝐵1-1𝐶 → ∃ 𝑔 ( 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ 𝑔 : 𝐵1-1𝐶 ) ) )
19 5 18 mpd ( ( 𝑥𝐴𝐵𝐶 ) → ∃ 𝑔 ( 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ 𝑔 : 𝐵1-1𝐶 ) )
20 df-rex ( ∃ 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶 ↔ ∃ 𝑔 ( 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ 𝑔 : 𝐵1-1𝐶 ) )
21 19 20 sylibr ( ( 𝑥𝐴𝐵𝐶 ) → ∃ 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶 )
22 21 ralimiaa ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑥𝐴𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶 )
23 3 22 syl ( 𝜑 → ∀ 𝑥𝐴𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶 )
24 nfv 𝑦𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶
25 nfiu1 𝑥 𝑥𝐴 ( 𝐶m 𝐵 )
26 nfcv 𝑥 𝑔
27 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
28 nfcv 𝑥 𝐶
29 26 27 28 nff1 𝑥 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶
30 25 29 nfrex 𝑥𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶
31 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
32 f1eq2 ( 𝐵 = 𝑦 / 𝑥 𝐵 → ( 𝑔 : 𝐵1-1𝐶𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
33 31 32 syl ( 𝑥 = 𝑦 → ( 𝑔 : 𝐵1-1𝐶𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
34 33 rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶 ↔ ∃ 𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
35 24 30 34 cbvralw ( ∀ 𝑥𝐴𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝐵1-1𝐶 ↔ ∀ 𝑦𝐴𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 )
36 23 35 sylib ( 𝜑 → ∀ 𝑦𝐴𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 )
37 f1eq1 ( 𝑔 = ( 𝑓𝑦 ) → ( 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 ↔ ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
38 37 acni3 ( ( 𝑥𝐴 ( 𝐶m 𝐵 ) ∈ AC 𝐴 ∧ ∀ 𝑦𝐴𝑔 𝑥𝐴 ( 𝐶m 𝐵 ) 𝑔 : 𝑦 / 𝑥 𝐵1-1𝐶 ) → ∃ 𝑓 ( 𝑓 : 𝐴 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
39 2 36 38 syl2anc ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
40 nfv 𝑦 ( 𝑓𝑥 ) : 𝐵1-1𝐶
41 nfcv 𝑥 ( 𝑓𝑦 )
42 41 27 28 nff1 𝑥 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶
43 fveq2 ( 𝑥 = 𝑦 → ( 𝑓𝑥 ) = ( 𝑓𝑦 ) )
44 f1eq1 ( ( 𝑓𝑥 ) = ( 𝑓𝑦 ) → ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ( 𝑓𝑦 ) : 𝐵1-1𝐶 ) )
45 43 44 syl ( 𝑥 = 𝑦 → ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ( 𝑓𝑦 ) : 𝐵1-1𝐶 ) )
46 f1eq2 ( 𝐵 = 𝑦 / 𝑥 𝐵 → ( ( 𝑓𝑦 ) : 𝐵1-1𝐶 ↔ ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
47 31 46 syl ( 𝑥 = 𝑦 → ( ( 𝑓𝑦 ) : 𝐵1-1𝐶 ↔ ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
48 45 47 bitrd ( 𝑥 = 𝑦 → ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) )
49 40 42 48 cbvralw ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ∀ 𝑦𝐴 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 )
50 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
51 acnrcl ( 𝑥𝐴 ( 𝐶m 𝐵 ) ∈ AC 𝐴𝐴 ∈ V )
52 2 51 syl ( 𝜑𝐴 ∈ V )
53 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵𝐶 ) → ∃ 𝑥𝐴 𝐵𝐶 )
54 8 rexlimivw ( ∃ 𝑥𝐴 𝐵𝐶𝐶 ∈ V )
55 53 54 syl ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝐵𝐶 ) → 𝐶 ∈ V )
56 55 expcom ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝐴 ≠ ∅ → 𝐶 ∈ V ) )
57 3 56 syl ( 𝜑 → ( 𝐴 ≠ ∅ → 𝐶 ∈ V ) )
58 xpexg ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 × 𝐶 ) ∈ V )
59 52 57 58 syl6an ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐴 × 𝐶 ) ∈ V ) )
60 50 59 syl5bir ( 𝜑 → ( ¬ 𝐴 = ∅ → ( 𝐴 × 𝐶 ) ∈ V ) )
61 xpeq1 ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) = ( ∅ × 𝐶 ) )
62 0xp ( ∅ × 𝐶 ) = ∅
63 0ex ∅ ∈ V
64 62 63 eqeltri ( ∅ × 𝐶 ) ∈ V
65 61 64 eqeltrdi ( 𝐴 = ∅ → ( 𝐴 × 𝐶 ) ∈ V )
66 60 65 pm2.61d2 ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V )
67 1 eleq2i ( 𝑦𝑇𝑦 𝑥𝐴 ( { 𝑥 } × 𝐵 ) )
68 eliun ( 𝑦 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↔ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) )
69 67 68 bitri ( 𝑦𝑇 ↔ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) )
70 r19.29 ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ∃ 𝑥𝐴 ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) )
71 xp1st ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 1st𝑦 ) ∈ { 𝑥 } )
72 71 ad2antll ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st𝑦 ) ∈ { 𝑥 } )
73 elsni ( ( 1st𝑦 ) ∈ { 𝑥 } → ( 1st𝑦 ) = 𝑥 )
74 72 73 syl ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st𝑦 ) = 𝑥 )
75 simpl ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝑥𝐴 )
76 74 75 eqeltrd ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 1st𝑦 ) ∈ 𝐴 )
77 74 fveq2d ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 𝑓 ‘ ( 1st𝑦 ) ) = ( 𝑓𝑥 ) )
78 77 fveq1d ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓𝑥 ) ‘ ( 2nd𝑦 ) ) )
79 f1f ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( 𝑓𝑥 ) : 𝐵𝐶 )
80 79 ad2antrl ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 𝑓𝑥 ) : 𝐵𝐶 )
81 xp2nd ( 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd𝑦 ) ∈ 𝐵 )
82 81 ad2antll ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 2nd𝑦 ) ∈ 𝐵 )
83 80 82 ffvelrnd ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓𝑥 ) ‘ ( 2nd𝑦 ) ) ∈ 𝐶 )
84 78 83 eqeltrd ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ∈ 𝐶 )
85 76 84 opelxpd ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ ∈ ( 𝐴 × 𝐶 ) )
86 85 rexlimiva ( ∃ 𝑥𝐴 ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ ∈ ( 𝐴 × 𝐶 ) )
87 70 86 syl ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ ∈ ( 𝐴 × 𝐶 ) )
88 87 ex ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ ∈ ( 𝐴 × 𝐶 ) ) )
89 69 88 syl5bi ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( 𝑦𝑇 → ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ ∈ ( 𝐴 × 𝐶 ) ) )
90 fvex ( 1st𝑦 ) ∈ V
91 fvex ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ∈ V
92 90 91 opth ( ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ = ⟨ ( 1st𝑧 ) , ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ⟩ ↔ ( ( 1st𝑦 ) = ( 1st𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ) )
93 simpr ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 1st𝑦 ) = ( 1st𝑧 ) )
94 93 fveq2d ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 𝑓 ‘ ( 1st𝑦 ) ) = ( 𝑓 ‘ ( 1st𝑧 ) ) )
95 94 fveq1d ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑧 ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) )
96 95 eqeq2d ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑧 ) ) ↔ ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ) )
97 djussxp 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ⊆ ( 𝐴 × V )
98 1 97 eqsstri 𝑇 ⊆ ( 𝐴 × V )
99 simprl ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → 𝑦𝑇 )
100 98 99 sseldi ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → 𝑦 ∈ ( 𝐴 × V ) )
101 100 adantr ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → 𝑦 ∈ ( 𝐴 × V ) )
102 xp1st ( 𝑦 ∈ ( 𝐴 × V ) → ( 1st𝑦 ) ∈ 𝐴 )
103 101 102 syl ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 1st𝑦 ) ∈ 𝐴 )
104 simpll ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 )
105 nfcv 𝑥 ( 𝑓 ‘ ( 1st𝑦 ) )
106 nfcsb1v 𝑥 ( 1st𝑦 ) / 𝑥 𝐵
107 105 106 28 nff1 𝑥 ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶
108 fveq2 ( 𝑥 = ( 1st𝑦 ) → ( 𝑓𝑥 ) = ( 𝑓 ‘ ( 1st𝑦 ) ) )
109 f1eq1 ( ( 𝑓𝑥 ) = ( 𝑓 ‘ ( 1st𝑦 ) ) → ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ( 𝑓 ‘ ( 1st𝑦 ) ) : 𝐵1-1𝐶 ) )
110 108 109 syl ( 𝑥 = ( 1st𝑦 ) → ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ( 𝑓 ‘ ( 1st𝑦 ) ) : 𝐵1-1𝐶 ) )
111 csbeq1a ( 𝑥 = ( 1st𝑦 ) → 𝐵 = ( 1st𝑦 ) / 𝑥 𝐵 )
112 f1eq2 ( 𝐵 = ( 1st𝑦 ) / 𝑥 𝐵 → ( ( 𝑓 ‘ ( 1st𝑦 ) ) : 𝐵1-1𝐶 ↔ ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶 ) )
113 111 112 syl ( 𝑥 = ( 1st𝑦 ) → ( ( 𝑓 ‘ ( 1st𝑦 ) ) : 𝐵1-1𝐶 ↔ ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶 ) )
114 110 113 bitrd ( 𝑥 = ( 1st𝑦 ) → ( ( 𝑓𝑥 ) : 𝐵1-1𝐶 ↔ ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶 ) )
115 107 114 rspc ( ( 1st𝑦 ) ∈ 𝐴 → ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶 ) )
116 103 104 115 sylc ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶 )
117 106 nfel2 𝑥 ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵
118 74 eqcomd ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝑥 = ( 1st𝑦 ) )
119 118 111 syl ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → 𝐵 = ( 1st𝑦 ) / 𝑥 𝐵 )
120 82 119 eleqtrd ( ( 𝑥𝐴 ∧ ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
121 120 ex ( 𝑥𝐴 → ( ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 ) )
122 117 121 rexlimi ( ∃ 𝑥𝐴 ( ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
123 70 122 syl ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
124 123 ex ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( ∃ 𝑥𝐴 𝑦 ∈ ( { 𝑥 } × 𝐵 ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 ) )
125 69 124 syl5bi ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( 𝑦𝑇 → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 ) )
126 125 imp ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑦𝑇 ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
127 126 adantrr ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
128 127 adantr ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
129 125 ralrimiv ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ∀ 𝑦𝑇 ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
130 fveq2 ( 𝑦 = 𝑧 → ( 2nd𝑦 ) = ( 2nd𝑧 ) )
131 fveq2 ( 𝑦 = 𝑧 → ( 1st𝑦 ) = ( 1st𝑧 ) )
132 131 csbeq1d ( 𝑦 = 𝑧 ( 1st𝑦 ) / 𝑥 𝐵 = ( 1st𝑧 ) / 𝑥 𝐵 )
133 130 132 eleq12d ( 𝑦 = 𝑧 → ( ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 ↔ ( 2nd𝑧 ) ∈ ( 1st𝑧 ) / 𝑥 𝐵 ) )
134 133 rspccva ( ( ∀ 𝑦𝑇 ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵𝑧𝑇 ) → ( 2nd𝑧 ) ∈ ( 1st𝑧 ) / 𝑥 𝐵 )
135 129 134 sylan ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑧𝑇 ) → ( 2nd𝑧 ) ∈ ( 1st𝑧 ) / 𝑥 𝐵 )
136 135 adantrl ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → ( 2nd𝑧 ) ∈ ( 1st𝑧 ) / 𝑥 𝐵 )
137 136 adantr ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 2nd𝑧 ) ∈ ( 1st𝑧 ) / 𝑥 𝐵 )
138 93 csbeq1d ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 1st𝑦 ) / 𝑥 𝐵 = ( 1st𝑧 ) / 𝑥 𝐵 )
139 137 138 eleqtrrd ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( 2nd𝑧 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 )
140 f1fveq ( ( ( 𝑓 ‘ ( 1st𝑦 ) ) : ( 1st𝑦 ) / 𝑥 𝐵1-1𝐶 ∧ ( ( 2nd𝑦 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 ∧ ( 2nd𝑧 ) ∈ ( 1st𝑦 ) / 𝑥 𝐵 ) ) → ( ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑧 ) ) ↔ ( 2nd𝑦 ) = ( 2nd𝑧 ) ) )
141 116 128 139 140 syl12anc ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑧 ) ) ↔ ( 2nd𝑦 ) = ( 2nd𝑧 ) ) )
142 96 141 bitr3d ( ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) ∧ ( 1st𝑦 ) = ( 1st𝑧 ) ) → ( ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ↔ ( 2nd𝑦 ) = ( 2nd𝑧 ) ) )
143 142 pm5.32da ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → ( ( ( 1st𝑦 ) = ( 1st𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ) ↔ ( ( 1st𝑦 ) = ( 1st𝑧 ) ∧ ( 2nd𝑦 ) = ( 2nd𝑧 ) ) ) )
144 simprr ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → 𝑧𝑇 )
145 98 144 sseldi ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → 𝑧 ∈ ( 𝐴 × V ) )
146 xpopth ( ( 𝑦 ∈ ( 𝐴 × V ) ∧ 𝑧 ∈ ( 𝐴 × V ) ) → ( ( ( 1st𝑦 ) = ( 1st𝑧 ) ∧ ( 2nd𝑦 ) = ( 2nd𝑧 ) ) ↔ 𝑦 = 𝑧 ) )
147 100 145 146 syl2anc ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → ( ( ( 1st𝑦 ) = ( 1st𝑧 ) ∧ ( 2nd𝑦 ) = ( 2nd𝑧 ) ) ↔ 𝑦 = 𝑧 ) )
148 143 147 bitrd ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → ( ( ( 1st𝑦 ) = ( 1st𝑧 ) ∧ ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) = ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ) ↔ 𝑦 = 𝑧 ) )
149 92 148 syl5bb ( ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 ∧ ( 𝑦𝑇𝑧𝑇 ) ) → ( ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ = ⟨ ( 1st𝑧 ) , ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ⟩ ↔ 𝑦 = 𝑧 ) )
150 149 ex ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( ( 𝑦𝑇𝑧𝑇 ) → ( ⟨ ( 1st𝑦 ) , ( ( 𝑓 ‘ ( 1st𝑦 ) ) ‘ ( 2nd𝑦 ) ) ⟩ = ⟨ ( 1st𝑧 ) , ( ( 𝑓 ‘ ( 1st𝑧 ) ) ‘ ( 2nd𝑧 ) ) ⟩ ↔ 𝑦 = 𝑧 ) ) )
151 89 150 dom2d ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶 → ( ( 𝐴 × 𝐶 ) ∈ V → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) )
152 66 151 syl5com ( 𝜑 → ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) : 𝐵1-1𝐶𝑇 ≼ ( 𝐴 × 𝐶 ) ) )
153 49 152 syl5bir ( 𝜑 → ( ∀ 𝑦𝐴 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶𝑇 ≼ ( 𝐴 × 𝐶 ) ) )
154 153 adantld ( 𝜑 → ( ( 𝑓 : 𝐴 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) )
155 154 exlimdv ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝐴 𝑥𝐴 ( 𝐶m 𝐵 ) ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) : 𝑦 / 𝑥 𝐵1-1𝐶 ) → 𝑇 ≼ ( 𝐴 × 𝐶 ) ) )
156 39 155 mpd ( 𝜑𝑇 ≼ ( 𝐴 × 𝐶 ) )