Metamath Proof Explorer


Theorem poimirlem10

Description: Lemma for poimir establishing the cube that yields the simplex that yields a face if the opposite vertex was first on the walk. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
poimirlem12.2 ( 𝜑𝑇𝑆 )
poimirlem11.3 ( 𝜑 → ( 2nd𝑇 ) = 0 )
Assertion poimirlem10 ( 𝜑 → ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ∘f − ( ( 1 ... 𝑁 ) × { 1 } ) ) = ( 1st ‘ ( 1st𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
3 poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
4 poimirlem12.2 ( 𝜑𝑇𝑆 )
5 poimirlem11.3 ( 𝜑 → ( 2nd𝑇 ) = 0 )
6 ovexd ( 𝜑 → ( 1 ... 𝑁 ) ∈ V )
7 nnm1nn0 ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 )
8 1 7 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 )
9 nn0fz0 ( ( 𝑁 − 1 ) ∈ ℕ0 ↔ ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
10 8 9 sylib ( 𝜑 → ( 𝑁 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) )
11 3 10 ffvelrnd ( 𝜑 → ( 𝐹 ‘ ( 𝑁 − 1 ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
12 elmapfn ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ∈ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ ( 𝑁 − 1 ) ) Fn ( 1 ... 𝑁 ) )
13 11 12 syl ( 𝜑 → ( 𝐹 ‘ ( 𝑁 − 1 ) ) Fn ( 1 ... 𝑁 ) )
14 1ex 1 ∈ V
15 fnconstg ( 1 ∈ V → ( ( 1 ... 𝑁 ) × { 1 } ) Fn ( 1 ... 𝑁 ) )
16 14 15 mp1i ( 𝜑 → ( ( 1 ... 𝑁 ) × { 1 } ) Fn ( 1 ... 𝑁 ) )
17 elrabi ( 𝑇 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
18 17 2 eleq2s ( 𝑇𝑆𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
19 4 18 syl ( 𝜑𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
20 xp1st ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
21 19 20 syl ( 𝜑 → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
22 xp1st ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
23 21 22 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
24 elmapfn ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
25 23 24 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
26 fveq2 ( 𝑡 = 𝑇 → ( 2nd𝑡 ) = ( 2nd𝑇 ) )
27 26 breq2d ( 𝑡 = 𝑇 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑇 ) ) )
28 27 ifbid ( 𝑡 = 𝑇 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) )
29 28 csbeq1d ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
30 2fveq3 ( 𝑡 = 𝑇 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑇 ) ) )
31 2fveq3 ( 𝑡 = 𝑇 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑇 ) ) )
32 31 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) )
33 32 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
34 31 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
35 34 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
36 33 35 uneq12d ( 𝑡 = 𝑇 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
37 30 36 oveq12d ( 𝑡 = 𝑇 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
38 37 csbeq2dv ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
39 29 38 eqtrd ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
40 39 mpteq2dv ( 𝑡 = 𝑇 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
41 40 eqeq2d ( 𝑡 = 𝑇 → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
42 41 2 elrab2 ( 𝑇𝑆 ↔ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
43 42 simprbi ( 𝑇𝑆𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
44 4 43 syl ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
45 breq12 ( ( 𝑦 = ( 𝑁 − 1 ) ∧ ( 2nd𝑇 ) = 0 ) → ( 𝑦 < ( 2nd𝑇 ) ↔ ( 𝑁 − 1 ) < 0 ) )
46 5 45 sylan2 ( ( 𝑦 = ( 𝑁 − 1 ) ∧ 𝜑 ) → ( 𝑦 < ( 2nd𝑇 ) ↔ ( 𝑁 − 1 ) < 0 ) )
47 46 ancoms ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → ( 𝑦 < ( 2nd𝑇 ) ↔ ( 𝑁 − 1 ) < 0 ) )
48 oveq1 ( 𝑦 = ( 𝑁 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) )
49 1 nncnd ( 𝜑𝑁 ∈ ℂ )
50 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
51 49 50 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
52 48 51 sylan9eqr ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) = 𝑁 )
53 47 52 ifbieq2d ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑁 − 1 ) < 0 , 𝑦 , 𝑁 ) )
54 8 nn0ge0d ( 𝜑 → 0 ≤ ( 𝑁 − 1 ) )
55 0red ( 𝜑 → 0 ∈ ℝ )
56 8 nn0red ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ )
57 55 56 lenltd ( 𝜑 → ( 0 ≤ ( 𝑁 − 1 ) ↔ ¬ ( 𝑁 − 1 ) < 0 ) )
58 54 57 mpbid ( 𝜑 → ¬ ( 𝑁 − 1 ) < 0 )
59 58 iffalsed ( 𝜑 → if ( ( 𝑁 − 1 ) < 0 , 𝑦 , 𝑁 ) = 𝑁 )
60 59 adantr ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → if ( ( 𝑁 − 1 ) < 0 , 𝑦 , 𝑁 ) = 𝑁 )
61 53 60 eqtrd ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = 𝑁 )
62 61 csbeq1d ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = 𝑁 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
63 oveq2 ( 𝑗 = 𝑁 → ( 1 ... 𝑗 ) = ( 1 ... 𝑁 ) )
64 63 imaeq2d ( 𝑗 = 𝑁 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) )
65 xp2nd ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
66 21 65 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
67 fvex ( 2nd ‘ ( 1st𝑇 ) ) ∈ V
68 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑇 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
69 67 68 elab ( ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
70 66 69 sylib ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
71 f1ofo ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
72 foima ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
73 70 71 72 3syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
74 64 73 sylan9eqr ( ( 𝜑𝑗 = 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( 1 ... 𝑁 ) )
75 74 xpeq1d ( ( 𝜑𝑗 = 𝑁 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 1 ... 𝑁 ) × { 1 } ) )
76 oveq1 ( 𝑗 = 𝑁 → ( 𝑗 + 1 ) = ( 𝑁 + 1 ) )
77 76 oveq1d ( 𝑗 = 𝑁 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑁 + 1 ) ... 𝑁 ) )
78 1 nnred ( 𝜑𝑁 ∈ ℝ )
79 78 ltp1d ( 𝜑𝑁 < ( 𝑁 + 1 ) )
80 1 nnzd ( 𝜑𝑁 ∈ ℤ )
81 80 peano2zd ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ )
82 fzn ( ( ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) )
83 81 80 82 syl2anc ( 𝜑 → ( 𝑁 < ( 𝑁 + 1 ) ↔ ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ ) )
84 79 83 mpbid ( 𝜑 → ( ( 𝑁 + 1 ) ... 𝑁 ) = ∅ )
85 77 84 sylan9eqr ( ( 𝜑𝑗 = 𝑁 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ∅ )
86 85 imaeq2d ( ( 𝜑𝑗 = 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
87 86 xpeq1d ( ( 𝜑𝑗 = 𝑁 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) × { 0 } ) )
88 ima0 ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) = ∅
89 88 xpeq1i ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) × { 0 } ) = ( ∅ × { 0 } )
90 0xp ( ∅ × { 0 } ) = ∅
91 89 90 eqtri ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) × { 0 } ) = ∅
92 87 91 eqtrdi ( ( 𝜑𝑗 = 𝑁 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ∅ )
93 75 92 uneq12d ( ( 𝜑𝑗 = 𝑁 ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 1 ... 𝑁 ) × { 1 } ) ∪ ∅ ) )
94 un0 ( ( ( 1 ... 𝑁 ) × { 1 } ) ∪ ∅ ) = ( ( 1 ... 𝑁 ) × { 1 } )
95 93 94 eqtrdi ( ( 𝜑𝑗 = 𝑁 ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( 1 ... 𝑁 ) × { 1 } ) )
96 95 oveq2d ( ( 𝜑𝑗 = 𝑁 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) )
97 1 96 csbied ( 𝜑 𝑁 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) )
98 97 adantr ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → 𝑁 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) )
99 62 98 eqtrd ( ( 𝜑𝑦 = ( 𝑁 − 1 ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) )
100 ovexd ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ∈ V )
101 44 99 10 100 fvmptd ( 𝜑 → ( 𝐹 ‘ ( 𝑁 − 1 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) )
102 101 fveq1d ( 𝜑 → ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ‘ 𝑛 ) )
103 102 adantr ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ‘ 𝑛 ) )
104 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
105 eqidd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
106 14 fvconst2 ( 𝑛 ∈ ( 1 ... 𝑁 ) → ( ( ( 1 ... 𝑁 ) × { 1 } ) ‘ 𝑛 ) = 1 )
107 106 adantl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 ... 𝑁 ) × { 1 } ) ‘ 𝑛 ) = 1 )
108 25 16 6 6 104 105 107 ofval ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( 1 ... 𝑁 ) × { 1 } ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) )
109 103 108 eqtrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ‘ 𝑛 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) )
110 elmapi ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
111 23 110 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
112 111 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) )
113 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
114 112 113 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
115 114 nn0cnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
116 pncan1 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) − 1 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
117 115 116 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) − 1 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
118 6 13 16 25 109 107 117 offveq ( 𝜑 → ( ( 𝐹 ‘ ( 𝑁 − 1 ) ) ∘f − ( ( 1 ... 𝑁 ) × { 1 } ) ) = ( 1st ‘ ( 1st𝑇 ) ) )