| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcnp.4 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
txcnp.5 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 3 |
|
txcnp.6 |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) |
| 4 |
|
txcnp.7 |
⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) |
| 5 |
|
txcnp.8 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) |
| 6 |
|
txcnp.9 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) |
| 7 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 8 |
1 2 5 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 9 |
8
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 10 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 11 |
1 3 6 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 12 |
11
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑍 ) |
| 13 |
9 12
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑌 × 𝑍 ) ) |
| 14 |
13
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑋 ⟶ ( 𝑌 × 𝑍 ) ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 16 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
| 17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) |
| 18 |
17
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 〈 𝐴 , 𝐵 〉 ∈ V ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 𝐴 , 𝐵 〉 ) |
| 19 |
15 16 18
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 𝐴 , 𝐵 〉 ) |
| 20 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 21 |
20
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 22 |
15 9 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
| 24 |
23
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐵 ∈ 𝑍 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 25 |
15 12 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 26 |
22 25
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 𝐴 , 𝐵 〉 ) |
| 27 |
19 26
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 29 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) |
| 30 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) |
| 31 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) |
| 32 |
30 31
|
nfop |
⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 |
| 33 |
29 32
|
nfeq |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 |
| 34 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝐷 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ) |
| 37 |
35 36
|
opeq12d |
⊢ ( 𝑥 = 𝐷 → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) |
| 38 |
34 37
|
eqeq12d |
⊢ ( 𝑥 = 𝐷 → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) ) |
| 39 |
33 38
|
rspc |
⊢ ( 𝐷 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) ) |
| 40 |
4 28 39
|
sylc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ) |
| 41 |
40
|
eleq1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) ↔ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) ↔ 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) ) ) |
| 43 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ) |
| 44 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → 𝑣 ∈ 𝐾 ) |
| 45 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ) |
| 46 |
|
cnpimaex |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐷 ) ∧ 𝑣 ∈ 𝐾 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ) → ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ) |
| 47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ) |
| 48 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ) |
| 49 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → 𝑤 ∈ 𝐿 ) |
| 50 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) |
| 51 |
|
cnpimaex |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( 𝐽 CnP 𝐿 ) ‘ 𝐷 ) ∧ 𝑤 ∈ 𝐿 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) → ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) |
| 52 |
48 49 50 51
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) |
| 53 |
47 52
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) → ( ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) |
| 54 |
53
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) → ( ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) ) |
| 55 |
|
opelxp |
⊢ ( 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) ↔ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) ∈ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) ∈ 𝑤 ) ) |
| 56 |
|
reeanv |
⊢ ( ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ↔ ( ∃ 𝑟 ∈ 𝐽 ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ∃ 𝑠 ∈ 𝐽 ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) |
| 57 |
54 55 56
|
3imtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝐷 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝐷 ) 〉 ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) ) |
| 58 |
42 57
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) ) |
| 59 |
|
an4 |
⊢ ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ↔ ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) |
| 60 |
|
elin |
⊢ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ↔ ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) ) |
| 61 |
60
|
biimpri |
⊢ ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) → 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ) |
| 62 |
61
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) → 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ) ) |
| 63 |
|
simpl |
⊢ ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → 𝑟 ∈ 𝐽 ) |
| 64 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑟 ∈ 𝐽 ) → 𝑟 ⊆ 𝑋 ) |
| 65 |
1 63 64
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → 𝑟 ⊆ 𝑋 ) |
| 66 |
|
ssinss1 |
⊢ ( 𝑟 ⊆ 𝑋 → ( 𝑟 ∩ 𝑠 ) ⊆ 𝑋 ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( 𝑟 ∩ 𝑠 ) ⊆ 𝑋 ) |
| 68 |
67
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ 𝑋 ) |
| 69 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ) |
| 70 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) |
| 71 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) |
| 72 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) |
| 73 |
71 72
|
nfop |
⊢ Ⅎ 𝑥 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 |
| 74 |
70 73
|
nfeq |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 |
| 75 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ) |
| 77 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ) |
| 78 |
76 77
|
opeq12d |
⊢ ( 𝑥 = 𝑡 → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) |
| 79 |
75 78
|
eqeq12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) ) |
| 80 |
74 79
|
rspc |
⊢ ( 𝑡 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑥 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑥 ) 〉 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) ) |
| 81 |
68 69 80
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) = 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ) |
| 82 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) |
| 83 |
82
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ 𝑟 ) |
| 84 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ 𝑌 ) |
| 85 |
84
|
ffund |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 86 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑟 ∩ 𝑠 ) ⊆ 𝑋 ) |
| 87 |
84
|
fdmd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = 𝑋 ) |
| 88 |
86 87
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 89 |
88 82
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 90 |
|
funfvima |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∧ 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) → ( 𝑡 ∈ 𝑟 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ) ) |
| 91 |
85 89 90
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑡 ∈ 𝑟 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ) ) |
| 92 |
83 91
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ) |
| 93 |
82
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ 𝑠 ) |
| 94 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ 𝑍 ) |
| 95 |
94
|
ffund |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → Fun ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 96 |
94
|
fdmd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = 𝑋 ) |
| 97 |
86 96
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 98 |
97 82
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 99 |
|
funfvima |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∧ 𝑡 ∈ dom ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) → ( 𝑡 ∈ 𝑠 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 100 |
95 98 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( 𝑡 ∈ 𝑠 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 101 |
93 100
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) ∈ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) |
| 102 |
92 101
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → 〈 ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑡 ) , ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ‘ 𝑡 ) 〉 ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 103 |
81 102
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) ∧ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 104 |
103
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ∀ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 105 |
14
|
ffund |
⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → Fun ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 107 |
14
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = 𝑋 ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) = 𝑋 ) |
| 109 |
67 108
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) |
| 110 |
|
funimass4 |
⊢ ( ( Fun ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∧ ( 𝑟 ∩ 𝑠 ) ⊆ dom ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ↔ ∀ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) ) |
| 111 |
106 109 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ↔ ∀ 𝑡 ∈ ( 𝑟 ∩ 𝑠 ) ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝑡 ) ∈ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) ) |
| 112 |
104 111
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑟 ⊆ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 113 |
65 112
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 114 |
113
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ) |
| 115 |
|
xpss12 |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) |
| 116 |
|
sstr2 |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) × ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 117 |
114 115 116
|
syl2im |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 118 |
62 117
|
anim12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( 𝐷 ∈ 𝑟 ∧ 𝐷 ∈ 𝑠 ) ∧ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 119 |
59 118
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 120 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 121 |
1 120
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 122 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 123 |
122
|
3expb |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 124 |
121 123
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 125 |
124
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ) |
| 126 |
119 125
|
jctild |
⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) ∧ ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ) → ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 127 |
126
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ∧ ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) → ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 128 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( 𝐷 ∈ 𝑧 ↔ 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ) ) |
| 129 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) = ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ) |
| 130 |
129
|
sseq1d |
⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 131 |
128 130
|
anbi12d |
⊢ ( 𝑧 = ( 𝑟 ∩ 𝑠 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ↔ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 132 |
131
|
rspcev |
⊢ ( ( ( 𝑟 ∩ 𝑠 ) ∈ 𝐽 ∧ ( 𝐷 ∈ ( 𝑟 ∩ 𝑠 ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ ( 𝑟 ∩ 𝑠 ) ) ⊆ ( 𝑣 × 𝑤 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 133 |
127 132
|
syl6 |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) ∧ ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 134 |
133
|
expd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( 𝑟 ∈ 𝐽 ∧ 𝑠 ∈ 𝐽 ) → ( ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 135 |
134
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ∃ 𝑟 ∈ 𝐽 ∃ 𝑠 ∈ 𝐽 ( ( 𝐷 ∈ 𝑟 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) “ 𝑟 ) ⊆ 𝑣 ) ∧ ( 𝐷 ∈ 𝑠 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) “ 𝑠 ) ⊆ 𝑤 ) ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 136 |
58 135
|
syld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐾 ∧ 𝑤 ∈ 𝐿 ) ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 137 |
136
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 138 |
|
vex |
⊢ 𝑣 ∈ V |
| 139 |
|
vex |
⊢ 𝑤 ∈ V |
| 140 |
138 139
|
xpex |
⊢ ( 𝑣 × 𝑤 ) ∈ V |
| 141 |
140
|
rgen2w |
⊢ ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( 𝑣 × 𝑤 ) ∈ V |
| 142 |
|
eqid |
⊢ ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) = ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) |
| 143 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) ) ) |
| 144 |
|
sseq2 |
⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) |
| 145 |
144
|
anbi2d |
⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 146 |
145
|
rexbidv |
⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ↔ ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 147 |
143 146
|
imbi12d |
⊢ ( 𝑦 = ( 𝑣 × 𝑤 ) → ( ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ↔ ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 148 |
142 147
|
ralrnmpo |
⊢ ( ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( 𝑣 × 𝑤 ) ∈ V → ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) ) |
| 149 |
141 148
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ↔ ∀ 𝑣 ∈ 𝐾 ∀ 𝑤 ∈ 𝐿 ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ ( 𝑣 × 𝑤 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ ( 𝑣 × 𝑤 ) ) ) ) |
| 150 |
137 149
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) |
| 151 |
|
topontop |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) |
| 152 |
2 151
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 153 |
|
topontop |
⊢ ( 𝐿 ∈ ( TopOn ‘ 𝑍 ) → 𝐿 ∈ Top ) |
| 154 |
3 153
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 155 |
|
eqid |
⊢ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) = ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) |
| 156 |
155
|
txval |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐾 ×t 𝐿 ) = ( topGen ‘ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ) ) |
| 157 |
152 154 156
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) = ( topGen ‘ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ) ) |
| 158 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑍 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) |
| 159 |
2 3 158
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑌 × 𝑍 ) ) ) |
| 160 |
1 157 159 4
|
tgcnp |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 CnP ( 𝐾 ×t 𝐿 ) ) ‘ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) : 𝑋 ⟶ ( 𝑌 × 𝑍 ) ∧ ∀ 𝑦 ∈ ran ( 𝑣 ∈ 𝐾 , 𝑤 ∈ 𝐿 ↦ ( 𝑣 × 𝑤 ) ) ( ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ‘ 𝐷 ) ∈ 𝑦 → ∃ 𝑧 ∈ 𝐽 ( 𝐷 ∈ 𝑧 ∧ ( ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) “ 𝑧 ) ⊆ 𝑦 ) ) ) ) ) |
| 161 |
14 150 160
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 〈 𝐴 , 𝐵 〉 ) ∈ ( ( 𝐽 CnP ( 𝐾 ×t 𝐿 ) ) ‘ 𝐷 ) ) |