| Step |
Hyp |
Ref |
Expression |
| 1 |
|
volcn.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) |
| 2 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ dom vol ) |
| 3 |
|
iccmbl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐵 [,] 𝑥 ) ∈ dom vol ) |
| 4 |
3
|
adantll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 [,] 𝑥 ) ∈ dom vol ) |
| 5 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 [,] 𝑥 ) ∈ dom vol ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ∈ dom vol ) |
| 6 |
2 4 5
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ∈ dom vol ) |
| 7 |
|
mblvol |
⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ) |
| 9 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ⊆ ( 𝐵 [,] 𝑥 ) |
| 10 |
|
mblss |
⊢ ( ( 𝐵 [,] 𝑥 ) ∈ dom vol → ( 𝐵 [,] 𝑥 ) ⊆ ℝ ) |
| 11 |
4 10
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 [,] 𝑥 ) ⊆ ℝ ) |
| 12 |
|
mblvol |
⊢ ( ( 𝐵 [,] 𝑥 ) ∈ dom vol → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) = ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ) |
| 13 |
4 12
|
syl |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) = ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ) |
| 14 |
|
iccvolcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) |
| 15 |
14
|
adantll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) |
| 16 |
13 15
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) |
| 17 |
|
ovolsscl |
⊢ ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ⊆ ( 𝐵 [,] 𝑥 ) ∧ ( 𝐵 [,] 𝑥 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐵 [,] 𝑥 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ∈ ℝ ) |
| 18 |
9 11 16 17
|
mp3an2i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ∈ ℝ ) |
| 19 |
8 18
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) ∈ ℝ ) |
| 20 |
19 1
|
fmptd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 21 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) ) → 𝑒 ∈ ℝ+ ) |
| 22 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑧 ∧ 𝑢 = 𝑦 ) → ( 𝑣 − 𝑢 ) = ( 𝑧 − 𝑦 ) ) |
| 23 |
22
|
ancoms |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( 𝑣 − 𝑢 ) = ( 𝑧 − 𝑦 ) ) |
| 24 |
23
|
fveq2d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( abs ‘ ( 𝑣 − 𝑢 ) ) = ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 25 |
24
|
breq1d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑣 = 𝑧 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑢 = 𝑦 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 28 |
26 27
|
oveqan12rd |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 30 |
29
|
breq1d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 31 |
25 30
|
imbi12d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑧 ) → ( ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 32 |
|
oveq12 |
⊢ ( ( 𝑣 = 𝑦 ∧ 𝑢 = 𝑧 ) → ( 𝑣 − 𝑢 ) = ( 𝑦 − 𝑧 ) ) |
| 33 |
32
|
ancoms |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( 𝑣 − 𝑢 ) = ( 𝑦 − 𝑧 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( abs ‘ ( 𝑣 − 𝑢 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 35 |
34
|
breq1d |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑣 = 𝑦 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 38 |
36 37
|
oveqan12rd |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) |
| 39 |
38
|
fveq2d |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 40 |
39
|
breq1d |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
| 41 |
35 40
|
imbi12d |
⊢ ( ( 𝑢 = 𝑧 ∧ 𝑣 = 𝑦 ) → ( ( ( abs ‘ ( 𝑣 − 𝑢 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − ( 𝐹 ‘ 𝑢 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 42 |
|
ssidd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) → ℝ ⊆ ℝ ) |
| 43 |
|
recn |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ∈ ℂ ) |
| 44 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 45 |
|
abssub |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 46 |
43 44 45
|
syl2anr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 47 |
46
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑧 ) ) ) |
| 48 |
47
|
breq1d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ↔ ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 ) ) |
| 49 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 50 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 51 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 52 |
50 51
|
anim12dan |
⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) ) |
| 53 |
49 52
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) ) |
| 54 |
|
recn |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 55 |
|
recn |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
| 56 |
|
abssub |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 57 |
54 55 56
|
syl2anr |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 58 |
53 57
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 59 |
58
|
breq1d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) |
| 60 |
48 59
|
imbi12d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ↔ ( ( abs ‘ ( 𝑦 − 𝑧 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) − ( 𝐹 ‘ 𝑧 ) ) ) < 𝑒 ) ) ) |
| 61 |
|
simpr2 |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑧 ∈ ℝ ) |
| 62 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 [,] 𝑥 ) = ( 𝐵 [,] 𝑧 ) ) |
| 63 |
62
|
ineq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) = ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑥 = 𝑧 → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 65 |
|
fvex |
⊢ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ∈ V |
| 66 |
64 1 65
|
fvmpt |
⊢ ( 𝑧 ∈ ℝ → ( 𝐹 ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 67 |
61 66
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 68 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐴 ∈ dom vol ) |
| 69 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 70 |
69
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐵 ∈ ℝ ) |
| 71 |
|
iccmbl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝐵 [,] 𝑧 ) ∈ dom vol ) |
| 72 |
70 61 71
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ∈ dom vol ) |
| 73 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 [,] 𝑧 ) ∈ dom vol ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol ) |
| 74 |
68 72 73
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol ) |
| 75 |
|
mblvol |
⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 76 |
74 75
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 77 |
67 76
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 78 |
|
simpr1 |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ∈ ℝ ) |
| 79 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 [,] 𝑥 ) = ( 𝐵 [,] 𝑦 ) ) |
| 80 |
79
|
ineq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) = ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) |
| 81 |
80
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑥 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 82 |
|
fvex |
⊢ ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ∈ V |
| 83 |
81 1 82
|
fvmpt |
⊢ ( 𝑦 ∈ ℝ → ( 𝐹 ‘ 𝑦 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 84 |
78 83
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) = ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 85 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → 𝑦 ∈ ℝ ) |
| 86 |
|
iccmbl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐵 [,] 𝑦 ) ∈ dom vol ) |
| 87 |
69 85 86
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑦 ) ∈ dom vol ) |
| 88 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐵 [,] 𝑦 ) ∈ dom vol ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∈ dom vol ) |
| 89 |
68 87 88
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∈ dom vol ) |
| 90 |
|
mblvol |
⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 91 |
89 90
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 92 |
84 91
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) = ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) |
| 93 |
77 92
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) − ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) ) |
| 94 |
49
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 95 |
94 61
|
ffvelcdmd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 96 |
77 95
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ∈ ℝ ) |
| 97 |
70
|
leidd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝐵 ≤ 𝐵 ) |
| 98 |
|
simpr3 |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑦 ≤ 𝑧 ) |
| 99 |
|
iccss |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝐵 ≤ 𝐵 ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑦 ) ⊆ ( 𝐵 [,] 𝑧 ) ) |
| 100 |
70 61 97 98 99
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑦 ) ⊆ ( 𝐵 [,] 𝑧 ) ) |
| 101 |
|
sslin |
⊢ ( ( 𝐵 [,] 𝑦 ) ⊆ ( 𝐵 [,] 𝑧 ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) |
| 102 |
100 101
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) |
| 103 |
|
mblss |
⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∈ dom vol → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ℝ ) |
| 104 |
74 103
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ℝ ) |
| 105 |
102 104
|
sstrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ℝ ) |
| 106 |
|
iccssre |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) |
| 107 |
78 61 106
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝑦 [,] 𝑧 ) ⊆ ℝ ) |
| 108 |
105 107
|
unssd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ⊆ ℝ ) |
| 109 |
94 78
|
ffvelcdmd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 110 |
92 109
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ∈ ℝ ) |
| 111 |
61 78
|
resubcld |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝑧 − 𝑦 ) ∈ ℝ ) |
| 112 |
110 111
|
readdcld |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ∈ ℝ ) |
| 113 |
|
ovolicc |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) |
| 114 |
113
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) = ( 𝑧 − 𝑦 ) ) |
| 115 |
114 111
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ∈ ℝ ) |
| 116 |
|
ovolun |
⊢ ( ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ∈ ℝ ) ∧ ( ( 𝑦 [,] 𝑧 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 117 |
105 110 107 115 116
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 118 |
114
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( vol* ‘ ( 𝑦 [,] 𝑧 ) ) ) = ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) |
| 119 |
117 118
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) |
| 120 |
|
ovollecl |
⊢ ( ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ⊆ ℝ ∧ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ∈ ℝ ∧ ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ∈ ℝ ) |
| 121 |
108 112 119 120
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ∈ ℝ ) |
| 122 |
70
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝐵 ∈ ℝ ) |
| 123 |
61
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑧 ∈ ℝ ) |
| 124 |
78
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑦 ∈ ℝ ) |
| 125 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝐵 ≤ 𝑦 ) |
| 126 |
98
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑦 ≤ 𝑧 ) |
| 127 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → 𝑧 ∈ ℝ ) |
| 128 |
|
elicc2 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐵 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 129 |
69 127 128
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐵 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 130 |
129
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → ( 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐵 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ) ) |
| 131 |
124 125 126 130
|
mpbir3and |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ) |
| 132 |
|
iccsplit |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ∈ ( 𝐵 [,] 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) = ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 133 |
122 123 131 132
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → ( 𝐵 [,] 𝑧 ) = ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 134 |
|
eqimss |
⊢ ( ( 𝐵 [,] 𝑧 ) = ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 135 |
133 134
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝐵 ≤ 𝑦 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 136 |
78
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑦 ∈ ℝ ) |
| 137 |
61
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑧 ∈ ℝ ) |
| 138 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑦 ≤ 𝐵 ) |
| 139 |
137
|
leidd |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → 𝑧 ≤ 𝑧 ) |
| 140 |
|
iccss |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑦 ≤ 𝐵 ∧ 𝑧 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) ) |
| 141 |
136 137 138 139 140
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) ) |
| 142 |
|
ssun4 |
⊢ ( ( 𝐵 [,] 𝑧 ) ⊆ ( 𝑦 [,] 𝑧 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 143 |
141 142
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) ∧ 𝑦 ≤ 𝐵 ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 144 |
70 78 135 143
|
lecasei |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 145 |
|
sslin |
⊢ ( ( 𝐵 [,] 𝑧 ) ⊆ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 146 |
144 145
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 147 |
|
indi |
⊢ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) = ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ) |
| 148 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ⊆ ( 𝑦 [,] 𝑧 ) |
| 149 |
|
unss2 |
⊢ ( ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ⊆ ( 𝑦 [,] 𝑧 ) → ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 150 |
148 149
|
ax-mp |
⊢ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝐴 ∩ ( 𝑦 [,] 𝑧 ) ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) |
| 151 |
147 150
|
eqsstri |
⊢ ( 𝐴 ∩ ( ( 𝐵 [,] 𝑦 ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) |
| 152 |
146 151
|
sstrdi |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) |
| 153 |
|
ovolss |
⊢ ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ∧ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 154 |
152 108 153
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( vol* ‘ ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ∪ ( 𝑦 [,] 𝑧 ) ) ) ) |
| 155 |
96 121 112 154 119
|
letrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) |
| 156 |
96 110 111
|
lesubadd2d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) − ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) ≤ ( 𝑧 − 𝑦 ) ↔ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ≤ ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) + ( 𝑧 − 𝑦 ) ) ) ) |
| 157 |
155 156
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) − ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ) ≤ ( 𝑧 − 𝑦 ) ) |
| 158 |
93 157
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝑧 − 𝑦 ) ) |
| 159 |
95 109
|
resubcld |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 160 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑒 ∈ ℝ+ ) |
| 161 |
160
|
rpred |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → 𝑒 ∈ ℝ ) |
| 162 |
|
lelttr |
⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑧 − 𝑦 ) ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝑧 − 𝑦 ) ∧ ( 𝑧 − 𝑦 ) < 𝑒 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 163 |
159 111 161 162
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝑧 − 𝑦 ) ∧ ( 𝑧 − 𝑦 ) < 𝑒 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 164 |
158 163
|
mpand |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( 𝑧 − 𝑦 ) < 𝑒 → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 165 |
|
abssubge0 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( 𝑧 − 𝑦 ) ) |
| 166 |
165
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( 𝑧 − 𝑦 ) ) |
| 167 |
166
|
breq1d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ↔ ( 𝑧 − 𝑦 ) < 𝑒 ) ) |
| 168 |
|
ovolss |
⊢ ( ( ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ∧ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ≤ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 169 |
102 104 168
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑦 ) ) ) ≤ ( vol* ‘ ( 𝐴 ∩ ( 𝐵 [,] 𝑧 ) ) ) ) |
| 170 |
169 92 77
|
3brtr4d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 171 |
109 95 170
|
abssubge0d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) |
| 172 |
171
|
breq1d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ↔ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) < 𝑒 ) ) |
| 173 |
164 167 172
|
3imtr4d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 ≤ 𝑧 ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 174 |
31 41 42 60 173
|
wlogle |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 175 |
174
|
anassrs |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ ℝ ) → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 176 |
175
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ ) → ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 177 |
176
|
anasss |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑒 ∈ ℝ+ ∧ 𝑦 ∈ ℝ ) ) → ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 178 |
177
|
ancom2s |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) ) → ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 179 |
|
breq2 |
⊢ ( 𝑑 = 𝑒 → ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 ↔ ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 ) ) |
| 180 |
179
|
rspceaimv |
⊢ ( ( 𝑒 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑒 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 181 |
21 178 180
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑒 ∈ ℝ+ ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 182 |
181
|
ralrimivva |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → ∀ 𝑦 ∈ ℝ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) |
| 183 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 184 |
|
elcncf2 |
⊢ ( ( ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝐹 ∈ ( ℝ –cn→ ℝ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) ) |
| 185 |
183 183 184
|
mp2an |
⊢ ( 𝐹 ∈ ( ℝ –cn→ ℝ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ ∀ 𝑦 ∈ ℝ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑧 ∈ ℝ ( ( abs ‘ ( 𝑧 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝑦 ) ) ) < 𝑒 ) ) ) |
| 186 |
20 182 185
|
sylanbrc |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ) → 𝐹 ∈ ( ℝ –cn→ ℝ ) ) |