Metamath Proof Explorer


Theorem volcn

Description: The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Hypothesis volcn.1 F=xvolABx
Assertion volcn AdomvolBF:cn

Proof

Step Hyp Ref Expression
1 volcn.1 F=xvolABx
2 simpll AdomvolBxAdomvol
3 iccmbl BxBxdomvol
4 3 adantll AdomvolBxBxdomvol
5 inmbl AdomvolBxdomvolABxdomvol
6 2 4 5 syl2anc AdomvolBxABxdomvol
7 mblvol ABxdomvolvolABx=vol*ABx
8 6 7 syl AdomvolBxvolABx=vol*ABx
9 inss2 ABxBx
10 mblss BxdomvolBx
11 4 10 syl AdomvolBxBx
12 mblvol BxdomvolvolBx=vol*Bx
13 4 12 syl AdomvolBxvolBx=vol*Bx
14 iccvolcl BxvolBx
15 14 adantll AdomvolBxvolBx
16 13 15 eqeltrrd AdomvolBxvol*Bx
17 ovolsscl ABxBxBxvol*Bxvol*ABx
18 9 11 16 17 mp3an2i AdomvolBxvol*ABx
19 8 18 eqeltrd AdomvolBxvolABx
20 19 1 fmptd AdomvolBF:
21 simprr AdomvolBye+e+
22 oveq12 v=zu=yvu=zy
23 22 ancoms u=yv=zvu=zy
24 23 fveq2d u=yv=zvu=zy
25 24 breq1d u=yv=zvu<ezy<e
26 fveq2 v=zFv=Fz
27 fveq2 u=yFu=Fy
28 26 27 oveqan12rd u=yv=zFvFu=FzFy
29 28 fveq2d u=yv=zFvFu=FzFy
30 29 breq1d u=yv=zFvFu<eFzFy<e
31 25 30 imbi12d u=yv=zvu<eFvFu<ezy<eFzFy<e
32 oveq12 v=yu=zvu=yz
33 32 ancoms u=zv=yvu=yz
34 33 fveq2d u=zv=yvu=yz
35 34 breq1d u=zv=yvu<eyz<e
36 fveq2 v=yFv=Fy
37 fveq2 u=zFu=Fz
38 36 37 oveqan12rd u=zv=yFvFu=FyFz
39 38 fveq2d u=zv=yFvFu=FyFz
40 39 breq1d u=zv=yFvFu<eFyFz<e
41 35 40 imbi12d u=zv=yvu<eFvFu<eyz<eFyFz<e
42 ssidd AdomvolBe+
43 recn zz
44 recn yy
45 abssub zyzy=yz
46 43 44 45 syl2anr yzzy=yz
47 46 adantl AdomvolBe+yzzy=yz
48 47 breq1d AdomvolBe+yzzy<eyz<e
49 20 adantr AdomvolBe+F:
50 ffvelcdm F:yFy
51 ffvelcdm F:zFz
52 50 51 anim12dan F:yzFyFz
53 49 52 sylan AdomvolBe+yzFyFz
54 recn FzFz
55 recn FyFy
56 abssub FzFyFzFy=FyFz
57 54 55 56 syl2anr FyFzFzFy=FyFz
58 53 57 syl AdomvolBe+yzFzFy=FyFz
59 58 breq1d AdomvolBe+yzFzFy<eFyFz<e
60 48 59 imbi12d AdomvolBe+yzzy<eFzFy<eyz<eFyFz<e
61 simpr2 AdomvolBe+yzyzz
62 oveq2 x=zBx=Bz
63 62 ineq2d x=zABx=ABz
64 63 fveq2d x=zvolABx=volABz
65 fvex volABzV
66 64 1 65 fvmpt zFz=volABz
67 61 66 syl AdomvolBe+yzyzFz=volABz
68 simplll AdomvolBe+yzyzAdomvol
69 simplr AdomvolBe+B
70 69 adantr AdomvolBe+yzyzB
71 iccmbl BzBzdomvol
72 70 61 71 syl2anc AdomvolBe+yzyzBzdomvol
73 inmbl AdomvolBzdomvolABzdomvol
74 68 72 73 syl2anc AdomvolBe+yzyzABzdomvol
75 mblvol ABzdomvolvolABz=vol*ABz
76 74 75 syl AdomvolBe+yzyzvolABz=vol*ABz
77 67 76 eqtrd AdomvolBe+yzyzFz=vol*ABz
78 simpr1 AdomvolBe+yzyzy
79 oveq2 x=yBx=By
80 79 ineq2d x=yABx=ABy
81 80 fveq2d x=yvolABx=volABy
82 fvex volAByV
83 81 1 82 fvmpt yFy=volABy
84 78 83 syl AdomvolBe+yzyzFy=volABy
85 simp1 yzyzy
86 iccmbl ByBydomvol
87 69 85 86 syl2an AdomvolBe+yzyzBydomvol
88 inmbl AdomvolBydomvolABydomvol
89 68 87 88 syl2anc AdomvolBe+yzyzABydomvol
90 mblvol ABydomvolvolABy=vol*ABy
91 89 90 syl AdomvolBe+yzyzvolABy=vol*ABy
92 84 91 eqtrd AdomvolBe+yzyzFy=vol*ABy
93 77 92 oveq12d AdomvolBe+yzyzFzFy=vol*ABzvol*ABy
94 49 adantr AdomvolBe+yzyzF:
95 94 61 ffvelcdmd AdomvolBe+yzyzFz
96 77 95 eqeltrrd AdomvolBe+yzyzvol*ABz
97 70 leidd AdomvolBe+yzyzBB
98 simpr3 AdomvolBe+yzyzyz
99 iccss BzBByzByBz
100 70 61 97 98 99 syl22anc AdomvolBe+yzyzByBz
101 sslin ByBzAByABz
102 100 101 syl AdomvolBe+yzyzAByABz
103 mblss ABzdomvolABz
104 74 103 syl AdomvolBe+yzyzABz
105 102 104 sstrd AdomvolBe+yzyzABy
106 iccssre yzyz
107 78 61 106 syl2anc AdomvolBe+yzyzyz
108 105 107 unssd AdomvolBe+yzyzAByyz
109 94 78 ffvelcdmd AdomvolBe+yzyzFy
110 92 109 eqeltrrd AdomvolBe+yzyzvol*ABy
111 61 78 resubcld AdomvolBe+yzyzzy
112 110 111 readdcld AdomvolBe+yzyzvol*ABy+z-y
113 ovolicc yzyzvol*yz=zy
114 113 adantl AdomvolBe+yzyzvol*yz=zy
115 114 111 eqeltrd AdomvolBe+yzyzvol*yz
116 ovolun AByvol*AByyzvol*yzvol*AByyzvol*ABy+vol*yz
117 105 110 107 115 116 syl22anc AdomvolBe+yzyzvol*AByyzvol*ABy+vol*yz
118 114 oveq2d AdomvolBe+yzyzvol*ABy+vol*yz=vol*ABy+z-y
119 117 118 breqtrd AdomvolBe+yzyzvol*AByyzvol*ABy+z-y
120 ovollecl AByyzvol*ABy+z-yvol*AByyzvol*ABy+z-yvol*AByyz
121 108 112 119 120 syl3anc AdomvolBe+yzyzvol*AByyz
122 70 adantr AdomvolBe+yzyzByB
123 61 adantr AdomvolBe+yzyzByz
124 78 adantr AdomvolBe+yzyzByy
125 simpr AdomvolBe+yzyzByBy
126 98 adantr AdomvolBe+yzyzByyz
127 simp2 yzyzz
128 elicc2 BzyBzyByyz
129 69 127 128 syl2an AdomvolBe+yzyzyBzyByyz
130 129 adantr AdomvolBe+yzyzByyBzyByyz
131 124 125 126 130 mpbir3and AdomvolBe+yzyzByyBz
132 iccsplit BzyBzBz=Byyz
133 122 123 131 132 syl3anc AdomvolBe+yzyzByBz=Byyz
134 eqimss Bz=ByyzBzByyz
135 133 134 syl AdomvolBe+yzyzByBzByyz
136 78 adantr AdomvolBe+yzyzyBy
137 61 adantr AdomvolBe+yzyzyBz
138 simpr AdomvolBe+yzyzyByB
139 137 leidd AdomvolBe+yzyzyBzz
140 iccss yzyBzzBzyz
141 136 137 138 139 140 syl22anc AdomvolBe+yzyzyBBzyz
142 ssun4 BzyzBzByyz
143 141 142 syl AdomvolBe+yzyzyBBzByyz
144 70 78 135 143 lecasei AdomvolBe+yzyzBzByyz
145 sslin BzByyzABzAByyz
146 144 145 syl AdomvolBe+yzyzABzAByyz
147 indi AByyz=AByAyz
148 inss2 Ayzyz
149 unss2 AyzyzAByAyzAByyz
150 148 149 ax-mp AByAyzAByyz
151 147 150 eqsstri AByyzAByyz
152 146 151 sstrdi AdomvolBe+yzyzABzAByyz
153 ovolss ABzAByyzAByyzvol*ABzvol*AByyz
154 152 108 153 syl2anc AdomvolBe+yzyzvol*ABzvol*AByyz
155 96 121 112 154 119 letrd AdomvolBe+yzyzvol*ABzvol*ABy+z-y
156 96 110 111 lesubadd2d AdomvolBe+yzyzvol*ABzvol*AByzyvol*ABzvol*ABy+z-y
157 155 156 mpbird AdomvolBe+yzyzvol*ABzvol*AByzy
158 93 157 eqbrtrd AdomvolBe+yzyzFzFyzy
159 95 109 resubcld AdomvolBe+yzyzFzFy
160 simplr AdomvolBe+yzyze+
161 160 rpred AdomvolBe+yzyze
162 lelttr FzFyzyeFzFyzyzy<eFzFy<e
163 159 111 161 162 syl3anc AdomvolBe+yzyzFzFyzyzy<eFzFy<e
164 158 163 mpand AdomvolBe+yzyzzy<eFzFy<e
165 abssubge0 yzyzzy=zy
166 165 adantl AdomvolBe+yzyzzy=zy
167 166 breq1d AdomvolBe+yzyzzy<ezy<e
168 ovolss AByABzABzvol*AByvol*ABz
169 102 104 168 syl2anc AdomvolBe+yzyzvol*AByvol*ABz
170 169 92 77 3brtr4d AdomvolBe+yzyzFyFz
171 109 95 170 abssubge0d AdomvolBe+yzyzFzFy=FzFy
172 171 breq1d AdomvolBe+yzyzFzFy<eFzFy<e
173 164 167 172 3imtr4d AdomvolBe+yzyzzy<eFzFy<e
174 31 41 42 60 173 wlogle AdomvolBe+yzzy<eFzFy<e
175 174 anassrs AdomvolBe+yzzy<eFzFy<e
176 175 ralrimiva AdomvolBe+yzzy<eFzFy<e
177 176 anasss AdomvolBe+yzzy<eFzFy<e
178 177 ancom2s AdomvolBye+zzy<eFzFy<e
179 breq2 d=ezy<dzy<e
180 179 rspceaimv e+zzy<eFzFy<ed+zzy<dFzFy<e
181 21 178 180 syl2anc AdomvolBye+d+zzy<dFzFy<e
182 181 ralrimivva AdomvolBye+d+zzy<dFzFy<e
183 ax-resscn
184 elcncf2 F:cnF:ye+d+zzy<dFzFy<e
185 183 183 184 mp2an F:cnF:ye+d+zzy<dFzFy<e
186 20 182 185 sylanbrc AdomvolBF:cn