| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplll |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 2 |  | simplr |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 3 |  | lencl |  |-  ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. NN0 ) | 
						
							| 4 | 3 | nn0zd |  |-  ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ZZ ) | 
						
							| 5 |  | fzossrbm1 |  |-  ( ( # ` A ) e. ZZ -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( A e. Word ( Vtx ` G ) -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) | 
						
							| 7 | 6 | ad2antrr |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) | 
						
							| 8 | 7 | sselda |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 9 |  | ccatval1 |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` i ) = ( A ` i ) ) | 
						
							| 10 | 1 2 8 9 | syl3anc |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( A ++ B ) ` i ) = ( A ` i ) ) | 
						
							| 11 | 4 | ad2antrr |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` A ) e. ZZ ) | 
						
							| 12 |  | elfzom1elp1fzo |  |-  ( ( ( # ` A ) e. ZZ /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) | 
						
							| 14 |  | ccatval1 |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( A ` ( i + 1 ) ) ) | 
						
							| 15 | 1 2 13 14 | syl3anc |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( A ` ( i + 1 ) ) ) | 
						
							| 16 | 10 15 | preq12d |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( A ` i ) , ( A ` ( i + 1 ) ) } ) | 
						
							| 17 | 16 | eleq1d |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 18 | 17 | biimprd |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 19 | 18 | ralimdva |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 20 | 19 | impancom |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( B e. Word ( Vtx ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 21 | 20 | 3adant3 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( B e. Word ( Vtx ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 22 | 21 | com12 |  |-  ( B e. Word ( Vtx ` G ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 25 | 24 | impcom |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 27 |  | simprl |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 28 |  | simpll |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 29 |  | simprr |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> A =/= (/) ) | 
						
							| 30 |  | ccatval1lsw |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) | 
						
							| 31 | 27 28 29 30 | syl3anc |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) | 
						
							| 33 | 3 | nn0cnd |  |-  ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. CC ) | 
						
							| 34 |  | npcan1 |  |-  ( ( # ` A ) e. CC -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( A e. Word ( Vtx ` G ) -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) | 
						
							| 36 | 35 | ad2antrl |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( ( A ++ B ) ` ( # ` A ) ) ) | 
						
							| 38 |  | simplr |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> B =/= (/) ) | 
						
							| 39 |  | ccatval21sw |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) | 
						
							| 40 | 27 28 38 39 | syl3anc |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) | 
						
							| 41 | 37 40 | eqtrd |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( B ` 0 ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( B ` 0 ) ) | 
						
							| 43 |  | simpr |  |-  ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 44 | 42 43 | eqtr4d |  |-  ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( A ` 0 ) ) | 
						
							| 45 | 32 44 | preq12d |  |-  ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } = { ( lastS ` A ) , ( A ` 0 ) } ) | 
						
							| 46 | 45 | eleq1d |  |-  ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) <-> { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 47 | 46 | exbiri |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 48 | 47 | com23 |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 49 | 48 | expimpd |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 50 | 49 | 3ad2ant1 |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 51 | 50 | com12 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 52 | 51 | 3adant2 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 53 | 52 | 3imp |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 54 |  | ralunb |  |-  ( A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 55 |  | ovex |  |-  ( ( # ` A ) - 1 ) e. _V | 
						
							| 56 |  | fveq2 |  |-  ( i = ( ( # ` A ) - 1 ) -> ( ( A ++ B ) ` i ) = ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 57 |  | fvoveq1 |  |-  ( i = ( ( # ` A ) - 1 ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) ) | 
						
							| 58 | 56 57 | preq12d |  |-  ( i = ( ( # ` A ) - 1 ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } ) | 
						
							| 59 | 58 | eleq1d |  |-  ( i = ( ( # ` A ) - 1 ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 60 | 55 59 | ralsn |  |-  ( A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 61 | 60 | anbi2i |  |-  ( ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 62 | 54 61 | bitri |  |-  ( A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 63 | 26 53 62 | sylanbrc |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 64 |  | 0z |  |-  0 e. ZZ | 
						
							| 65 |  | lennncl |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. NN ) | 
						
							| 66 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 67 | 66 | fveq2i |  |-  ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) | 
						
							| 68 | 67 | eleq2i |  |-  ( ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) <-> ( # ` A ) e. ( ZZ>= ` 1 ) ) | 
						
							| 69 |  | elnnuz |  |-  ( ( # ` A ) e. NN <-> ( # ` A ) e. ( ZZ>= ` 1 ) ) | 
						
							| 70 | 68 69 | bitr4i |  |-  ( ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) <-> ( # ` A ) e. NN ) | 
						
							| 71 | 65 70 | sylibr |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) ) | 
						
							| 72 |  | fzosplitsnm1 |  |-  ( ( 0 e. ZZ /\ ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ ( # ` A ) ) = ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) ) | 
						
							| 73 | 64 71 72 | sylancr |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( 0 ..^ ( # ` A ) ) = ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) ) | 
						
							| 74 | 73 | raleqdv |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 75 | 74 | 3ad2ant1 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 76 | 75 | 3ad2ant1 |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 77 | 63 76 | mpbird |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 78 |  | lencl |  |-  ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. NN0 ) | 
						
							| 79 | 78 | nn0zd |  |-  ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. ZZ ) | 
						
							| 80 |  | peano2zm |  |-  ( ( # ` B ) e. ZZ -> ( ( # ` B ) - 1 ) e. ZZ ) | 
						
							| 81 | 79 80 | syl |  |-  ( B e. Word ( Vtx ` G ) -> ( ( # ` B ) - 1 ) e. ZZ ) | 
						
							| 82 | 81 | ad2antrl |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) | 
						
							| 84 | 83 | anim1ci |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) /\ ( ( # ` B ) - 1 ) e. ZZ ) ) | 
						
							| 85 |  | fzosubel3 |  |-  ( ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) /\ ( ( # ` B ) - 1 ) e. ZZ ) -> ( i - ( # ` A ) ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) | 
						
							| 86 |  | fveq2 |  |-  ( j = ( i - ( # ` A ) ) -> ( B ` j ) = ( B ` ( i - ( # ` A ) ) ) ) | 
						
							| 87 |  | fvoveq1 |  |-  ( j = ( i - ( # ` A ) ) -> ( B ` ( j + 1 ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) | 
						
							| 88 | 86 87 | preq12d |  |-  ( j = ( i - ( # ` A ) ) -> { ( B ` j ) , ( B ` ( j + 1 ) ) } = { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } ) | 
						
							| 89 | 88 | eleq1d |  |-  ( j = ( i - ( # ` A ) ) -> ( { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) <-> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 90 | 89 | rspcv |  |-  ( ( i - ( # ` A ) ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 91 | 84 85 90 | 3syl |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 92 |  | simp-4l |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 93 |  | simprl |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 94 | 93 | ad2antrr |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 95 | 3 | adantr |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. NN0 ) | 
						
							| 96 | 78 | adantr |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. NN0 ) | 
						
							| 97 |  | nn0addcl |  |-  ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. NN0 ) | 
						
							| 98 | 97 | nn0zd |  |-  ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) | 
						
							| 99 | 95 96 98 | syl2an |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) | 
						
							| 100 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 101 |  | eluzmn |  |-  ( ( ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ 1 e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) | 
						
							| 102 | 99 100 101 | sylancl |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) | 
						
							| 103 | 33 | ad2antrr |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( # ` A ) e. CC ) | 
						
							| 104 | 78 | nn0cnd |  |-  ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. CC ) | 
						
							| 105 | 104 | ad2antrl |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( # ` B ) e. CC ) | 
						
							| 106 |  | 1cnd |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> 1 e. CC ) | 
						
							| 107 | 103 105 106 | addsubassd |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) = ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) | 
						
							| 108 | 107 | fveq2d |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) = ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 109 | 102 108 | eleqtrd |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 110 |  | fzoss2 |  |-  ( ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 111 | 109 110 | syl |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 113 | 112 | sselda |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 114 |  | ccatval2 |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` i ) = ( B ` ( i - ( # ` A ) ) ) ) | 
						
							| 115 | 92 94 113 114 | syl3anc |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` i ) = ( B ` ( i - ( # ` A ) ) ) ) | 
						
							| 116 | 107 | oveq2d |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) = ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 117 | 116 | eleq2d |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 119 |  | eluzmn |  |-  ( ( ( # ` A ) e. ZZ /\ 1 e. NN0 ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 120 | 4 100 119 | sylancl |  |-  ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 121 | 120 | ad3antrrr |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 122 |  | fzoss1 |  |-  ( ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) C_ ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) | 
						
							| 123 | 121 122 | syl |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) C_ ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) | 
						
							| 124 | 123 | sseld |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) ) | 
						
							| 125 | 118 124 | sylbird |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) ) | 
						
							| 126 | 125 | imp |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) | 
						
							| 127 | 4 | adantr |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ZZ ) | 
						
							| 128 | 79 | adantr |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. ZZ ) | 
						
							| 129 |  | simpl |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( # ` A ) e. ZZ ) | 
						
							| 130 |  | zaddcl |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) | 
						
							| 131 | 129 130 | jca |  |-  ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) | 
						
							| 132 | 127 128 131 | syl2an |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) | 
						
							| 134 |  | elfzoelz |  |-  ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. ZZ ) | 
						
							| 135 |  | 1zzd |  |-  ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> 1 e. ZZ ) | 
						
							| 136 | 134 135 | jca |  |-  ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> ( i e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 137 |  | elfzomelpfzo |  |-  ( ( ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) /\ ( i e. ZZ /\ 1 e. ZZ ) ) -> ( i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 138 | 133 136 137 | syl2an |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) | 
						
							| 139 | 126 138 | mpbid |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) | 
						
							| 140 |  | ccatval2 |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i + 1 ) - ( # ` A ) ) ) ) | 
						
							| 141 | 92 94 139 140 | syl3anc |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i + 1 ) - ( # ` A ) ) ) ) | 
						
							| 142 | 134 | zcnd |  |-  ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. CC ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. CC ) | 
						
							| 144 |  | 1cnd |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> 1 e. CC ) | 
						
							| 145 | 103 | ad2antrr |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( # ` A ) e. CC ) | 
						
							| 146 | 143 144 145 | addsubd |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( i + 1 ) - ( # ` A ) ) = ( ( i - ( # ` A ) ) + 1 ) ) | 
						
							| 147 | 146 | fveq2d |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( B ` ( ( i + 1 ) - ( # ` A ) ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) | 
						
							| 148 | 141 147 | eqtrd |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) | 
						
							| 149 | 115 148 | preq12d |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } ) | 
						
							| 150 | 149 | eleq1d |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 151 | 91 150 | sylibrd |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 152 | 151 | impancom |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 153 | 152 | ralrimiv |  |-  ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 154 | 153 | exp31 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 155 | 154 | expcom |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 156 | 155 | com23 |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 157 | 156 | com24 |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 158 | 157 | imp |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 159 | 158 | 3adant3 |  |-  ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 160 | 159 | com12 |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 161 | 160 | 3ad2ant1 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 162 | 161 | 3imp |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 163 |  | ralunb |  |-  ( A. i e. ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 164 | 77 162 163 | sylanbrc |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 165 |  | ccatlen |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 166 | 165 | oveq1d |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) | 
						
							| 167 | 166 | ad2ant2r |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) | 
						
							| 168 | 167 107 | eqtrd |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) | 
						
							| 169 | 168 | oveq2d |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) | 
						
							| 170 |  | elnn0uz |  |-  ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( ZZ>= ` 0 ) ) | 
						
							| 171 | 3 170 | sylib |  |-  ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) | 
						
							| 172 | 171 | adantr |  |-  ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) | 
						
							| 173 |  | lennncl |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. NN ) | 
						
							| 174 |  | nnm1nn0 |  |-  ( ( # ` B ) e. NN -> ( ( # ` B ) - 1 ) e. NN0 ) | 
						
							| 175 | 173 174 | syl |  |-  ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( # ` B ) - 1 ) e. NN0 ) | 
						
							| 176 |  | fzoun |  |-  ( ( ( # ` A ) e. ( ZZ>= ` 0 ) /\ ( ( # ` B ) - 1 ) e. NN0 ) -> ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 177 | 172 175 176 | syl2an |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 178 | 169 177 | eqtrd |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 179 | 178 | 3ad2antr1 |  |-  ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 180 | 179 | 3ad2antl1 |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 181 | 180 | 3adant3 |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) | 
						
							| 182 | 164 181 | raleqtrrdv |  |-  ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |