| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgrelexlem.1 |  |-  L = { <. i , j >. | E. c e. ( `' S " { i } ) E. d e. ( `' S " { j } ) ( c ` 0 ) = ( d ` 0 ) } | 
						
							| 8 | 1 2 3 4 | efgval2 |  |-  .~ = |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } | 
						
							| 9 | 7 | relopabiv |  |-  Rel L | 
						
							| 10 | 9 | a1i |  |-  ( T. -> Rel L ) | 
						
							| 11 |  | simpr |  |-  ( ( T. /\ f L g ) -> f L g ) | 
						
							| 12 |  | eqcom |  |-  ( ( a ` 0 ) = ( b ` 0 ) <-> ( b ` 0 ) = ( a ` 0 ) ) | 
						
							| 13 | 12 | 2rexbii |  |-  ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( b ` 0 ) = ( a ` 0 ) ) | 
						
							| 14 |  | rexcom |  |-  ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( b ` 0 ) = ( a ` 0 ) <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) | 
						
							| 15 | 13 14 | bitri |  |-  ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 | efgrelexlema |  |-  ( f L g <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 | efgrelexlema |  |-  ( g L f <-> E. b e. ( `' S " { g } ) E. a e. ( `' S " { f } ) ( b ` 0 ) = ( a ` 0 ) ) | 
						
							| 18 | 15 16 17 | 3bitr4i |  |-  ( f L g <-> g L f ) | 
						
							| 19 | 11 18 | sylib |  |-  ( ( T. /\ f L g ) -> g L f ) | 
						
							| 20 | 1 2 3 4 5 6 7 | efgrelexlema |  |-  ( g L h <-> E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) | 
						
							| 21 |  | reeanv |  |-  ( E. a e. ( `' S " { f } ) E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) <-> ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 | efgsfo |  |-  S : dom S -onto-> W | 
						
							| 23 |  | fofn |  |-  ( S : dom S -onto-> W -> S Fn dom S ) | 
						
							| 24 | 22 23 | ax-mp |  |-  S Fn dom S | 
						
							| 25 |  | fniniseg |  |-  ( S Fn dom S -> ( r e. ( `' S " { g } ) <-> ( r e. dom S /\ ( S ` r ) = g ) ) ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ( r e. ( `' S " { g } ) <-> ( r e. dom S /\ ( S ` r ) = g ) ) | 
						
							| 27 |  | fniniseg |  |-  ( S Fn dom S -> ( b e. ( `' S " { g } ) <-> ( b e. dom S /\ ( S ` b ) = g ) ) ) | 
						
							| 28 | 24 27 | ax-mp |  |-  ( b e. ( `' S " { g } ) <-> ( b e. dom S /\ ( S ` b ) = g ) ) | 
						
							| 29 |  | eqtr3 |  |-  ( ( ( S ` r ) = g /\ ( S ` b ) = g ) -> ( S ` r ) = ( S ` b ) ) | 
						
							| 30 | 1 2 3 4 5 6 | efgred |  |-  ( ( r e. dom S /\ b e. dom S /\ ( S ` r ) = ( S ` b ) ) -> ( r ` 0 ) = ( b ` 0 ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ( r e. dom S /\ b e. dom S /\ ( S ` r ) = ( S ` b ) ) -> ( b ` 0 ) = ( r ` 0 ) ) | 
						
							| 32 | 31 | 3expa |  |-  ( ( ( r e. dom S /\ b e. dom S ) /\ ( S ` r ) = ( S ` b ) ) -> ( b ` 0 ) = ( r ` 0 ) ) | 
						
							| 33 | 29 32 | sylan2 |  |-  ( ( ( r e. dom S /\ b e. dom S ) /\ ( ( S ` r ) = g /\ ( S ` b ) = g ) ) -> ( b ` 0 ) = ( r ` 0 ) ) | 
						
							| 34 | 33 | an4s |  |-  ( ( ( r e. dom S /\ ( S ` r ) = g ) /\ ( b e. dom S /\ ( S ` b ) = g ) ) -> ( b ` 0 ) = ( r ` 0 ) ) | 
						
							| 35 | 26 28 34 | syl2anb |  |-  ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( b ` 0 ) = ( r ` 0 ) ) | 
						
							| 36 |  | eqeq2 |  |-  ( ( r ` 0 ) = ( s ` 0 ) -> ( ( b ` 0 ) = ( r ` 0 ) <-> ( b ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 37 | 35 36 | syl5ibcom |  |-  ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( ( r ` 0 ) = ( s ` 0 ) -> ( b ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 38 | 37 | reximdv |  |-  ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 39 |  | eqeq1 |  |-  ( ( a ` 0 ) = ( b ` 0 ) -> ( ( a ` 0 ) = ( s ` 0 ) <-> ( b ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 40 | 39 | rexbidv |  |-  ( ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) <-> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 41 | 40 | imbi2d |  |-  ( ( a ` 0 ) = ( b ` 0 ) -> ( ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) <-> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( b ` 0 ) = ( s ` 0 ) ) ) ) | 
						
							| 42 | 38 41 | syl5ibrcom |  |-  ( ( r e. ( `' S " { g } ) /\ b e. ( `' S " { g } ) ) -> ( ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) ) | 
						
							| 43 | 42 | rexlimdva |  |-  ( r e. ( `' S " { g } ) -> ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) -> ( E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) ) | 
						
							| 44 | 43 | impd |  |-  ( r e. ( `' S " { g } ) -> ( ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) ) | 
						
							| 45 | 44 | rexlimiv |  |-  ( E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) | 
						
							| 46 | 45 | reximi |  |-  ( E. a e. ( `' S " { f } ) E. r e. ( `' S " { g } ) ( E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) | 
						
							| 47 | 21 46 | sylbir |  |-  ( ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { g } ) ( a ` 0 ) = ( b ` 0 ) /\ E. r e. ( `' S " { g } ) E. s e. ( `' S " { h } ) ( r ` 0 ) = ( s ` 0 ) ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) | 
						
							| 48 | 16 20 47 | syl2anb |  |-  ( ( f L g /\ g L h ) -> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) | 
						
							| 49 | 1 2 3 4 5 6 7 | efgrelexlema |  |-  ( f L h <-> E. a e. ( `' S " { f } ) E. s e. ( `' S " { h } ) ( a ` 0 ) = ( s ` 0 ) ) | 
						
							| 50 | 48 49 | sylibr |  |-  ( ( f L g /\ g L h ) -> f L h ) | 
						
							| 51 | 50 | adantl |  |-  ( ( T. /\ ( f L g /\ g L h ) ) -> f L h ) | 
						
							| 52 |  | eqid |  |-  ( a ` 0 ) = ( a ` 0 ) | 
						
							| 53 |  | fveq1 |  |-  ( b = a -> ( b ` 0 ) = ( a ` 0 ) ) | 
						
							| 54 | 53 | rspceeqv |  |-  ( ( a e. ( `' S " { f } ) /\ ( a ` 0 ) = ( a ` 0 ) ) -> E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) | 
						
							| 55 | 52 54 | mpan2 |  |-  ( a e. ( `' S " { f } ) -> E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) | 
						
							| 56 | 55 | pm4.71i |  |-  ( a e. ( `' S " { f } ) <-> ( a e. ( `' S " { f } ) /\ E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) ) | 
						
							| 57 |  | fniniseg |  |-  ( S Fn dom S -> ( a e. ( `' S " { f } ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) ) | 
						
							| 58 | 24 57 | ax-mp |  |-  ( a e. ( `' S " { f } ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) | 
						
							| 59 | 56 58 | bitr3i |  |-  ( ( a e. ( `' S " { f } ) /\ E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) <-> ( a e. dom S /\ ( S ` a ) = f ) ) | 
						
							| 60 | 59 | rexbii2 |  |-  ( E. a e. ( `' S " { f } ) E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) <-> E. a e. dom S ( S ` a ) = f ) | 
						
							| 61 | 1 2 3 4 5 6 7 | efgrelexlema |  |-  ( f L f <-> E. a e. ( `' S " { f } ) E. b e. ( `' S " { f } ) ( a ` 0 ) = ( b ` 0 ) ) | 
						
							| 62 |  | forn |  |-  ( S : dom S -onto-> W -> ran S = W ) | 
						
							| 63 | 22 62 | ax-mp |  |-  ran S = W | 
						
							| 64 | 63 | eleq2i |  |-  ( f e. ran S <-> f e. W ) | 
						
							| 65 |  | fvelrnb |  |-  ( S Fn dom S -> ( f e. ran S <-> E. a e. dom S ( S ` a ) = f ) ) | 
						
							| 66 | 24 65 | ax-mp |  |-  ( f e. ran S <-> E. a e. dom S ( S ` a ) = f ) | 
						
							| 67 | 64 66 | bitr3i |  |-  ( f e. W <-> E. a e. dom S ( S ` a ) = f ) | 
						
							| 68 | 60 61 67 | 3bitr4ri |  |-  ( f e. W <-> f L f ) | 
						
							| 69 | 68 | a1i |  |-  ( T. -> ( f e. W <-> f L f ) ) | 
						
							| 70 | 10 19 51 69 | iserd |  |-  ( T. -> L Er W ) | 
						
							| 71 | 70 | mptru |  |-  L Er W | 
						
							| 72 |  | simpl |  |-  ( ( a e. W /\ b e. ran ( T ` a ) ) -> a e. W ) | 
						
							| 73 |  | foelrn |  |-  ( ( S : dom S -onto-> W /\ a e. W ) -> E. r e. dom S a = ( S ` r ) ) | 
						
							| 74 | 22 72 73 | sylancr |  |-  ( ( a e. W /\ b e. ran ( T ` a ) ) -> E. r e. dom S a = ( S ` r ) ) | 
						
							| 75 |  | simprl |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. dom S ) | 
						
							| 76 |  | simprr |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> a = ( S ` r ) ) | 
						
							| 77 | 76 | eqcomd |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( S ` r ) = a ) | 
						
							| 78 |  | fniniseg |  |-  ( S Fn dom S -> ( r e. ( `' S " { a } ) <-> ( r e. dom S /\ ( S ` r ) = a ) ) ) | 
						
							| 79 | 24 78 | ax-mp |  |-  ( r e. ( `' S " { a } ) <-> ( r e. dom S /\ ( S ` r ) = a ) ) | 
						
							| 80 | 75 77 79 | sylanbrc |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. ( `' S " { a } ) ) | 
						
							| 81 |  | simplr |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. ran ( T ` a ) ) | 
						
							| 82 | 76 | fveq2d |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( T ` a ) = ( T ` ( S ` r ) ) ) | 
						
							| 83 | 82 | rneqd |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ran ( T ` a ) = ran ( T ` ( S ` r ) ) ) | 
						
							| 84 | 81 83 | eleqtrd |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. ran ( T ` ( S ` r ) ) ) | 
						
							| 85 | 1 2 3 4 5 6 | efgsp1 |  |-  ( ( r e. dom S /\ b e. ran ( T ` ( S ` r ) ) ) -> ( r ++ <" b "> ) e. dom S ) | 
						
							| 86 | 75 84 85 | syl2anc |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ++ <" b "> ) e. dom S ) | 
						
							| 87 | 1 2 3 4 5 6 | efgsdm |  |-  ( r e. dom S <-> ( r e. ( Word W \ { (/) } ) /\ ( r ` 0 ) e. D /\ A. i e. ( 1 ..^ ( # ` r ) ) ( r ` i ) e. ran ( T ` ( r ` ( i - 1 ) ) ) ) ) | 
						
							| 88 | 87 | simp1bi |  |-  ( r e. dom S -> r e. ( Word W \ { (/) } ) ) | 
						
							| 89 | 88 | ad2antrl |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. ( Word W \ { (/) } ) ) | 
						
							| 90 | 89 | eldifad |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> r e. Word W ) | 
						
							| 91 | 1 2 3 4 | efgtf |  |-  ( a e. W -> ( ( T ` a ) = ( f e. ( 0 ... ( # ` a ) ) , g e. ( I X. 2o ) |-> ( a splice <. f , f , <" g ( M ` g ) "> >. ) ) /\ ( T ` a ) : ( ( 0 ... ( # ` a ) ) X. ( I X. 2o ) ) --> W ) ) | 
						
							| 92 | 91 | simprd |  |-  ( a e. W -> ( T ` a ) : ( ( 0 ... ( # ` a ) ) X. ( I X. 2o ) ) --> W ) | 
						
							| 93 | 92 | frnd |  |-  ( a e. W -> ran ( T ` a ) C_ W ) | 
						
							| 94 | 93 | sselda |  |-  ( ( a e. W /\ b e. ran ( T ` a ) ) -> b e. W ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> b e. W ) | 
						
							| 96 | 1 2 3 4 5 6 | efgsval2 |  |-  ( ( r e. Word W /\ b e. W /\ ( r ++ <" b "> ) e. dom S ) -> ( S ` ( r ++ <" b "> ) ) = b ) | 
						
							| 97 | 90 95 86 96 | syl3anc |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( S ` ( r ++ <" b "> ) ) = b ) | 
						
							| 98 |  | fniniseg |  |-  ( S Fn dom S -> ( ( r ++ <" b "> ) e. ( `' S " { b } ) <-> ( ( r ++ <" b "> ) e. dom S /\ ( S ` ( r ++ <" b "> ) ) = b ) ) ) | 
						
							| 99 | 24 98 | ax-mp |  |-  ( ( r ++ <" b "> ) e. ( `' S " { b } ) <-> ( ( r ++ <" b "> ) e. dom S /\ ( S ` ( r ++ <" b "> ) ) = b ) ) | 
						
							| 100 | 86 97 99 | sylanbrc |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ++ <" b "> ) e. ( `' S " { b } ) ) | 
						
							| 101 | 95 | s1cld |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> <" b "> e. Word W ) | 
						
							| 102 |  | eldifsn |  |-  ( r e. ( Word W \ { (/) } ) <-> ( r e. Word W /\ r =/= (/) ) ) | 
						
							| 103 |  | lennncl |  |-  ( ( r e. Word W /\ r =/= (/) ) -> ( # ` r ) e. NN ) | 
						
							| 104 | 102 103 | sylbi |  |-  ( r e. ( Word W \ { (/) } ) -> ( # ` r ) e. NN ) | 
						
							| 105 | 89 104 | syl |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( # ` r ) e. NN ) | 
						
							| 106 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` r ) ) <-> ( # ` r ) e. NN ) | 
						
							| 107 | 105 106 | sylibr |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> 0 e. ( 0 ..^ ( # ` r ) ) ) | 
						
							| 108 |  | ccatval1 |  |-  ( ( r e. Word W /\ <" b "> e. Word W /\ 0 e. ( 0 ..^ ( # ` r ) ) ) -> ( ( r ++ <" b "> ) ` 0 ) = ( r ` 0 ) ) | 
						
							| 109 | 90 101 107 108 | syl3anc |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( ( r ++ <" b "> ) ` 0 ) = ( r ` 0 ) ) | 
						
							| 110 | 109 | eqcomd |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> ( r ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) | 
						
							| 111 |  | fveq1 |  |-  ( s = ( r ++ <" b "> ) -> ( s ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) | 
						
							| 112 | 111 | rspceeqv |  |-  ( ( ( r ++ <" b "> ) e. ( `' S " { b } ) /\ ( r ` 0 ) = ( ( r ++ <" b "> ) ` 0 ) ) -> E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) | 
						
							| 113 | 100 110 112 | syl2anc |  |-  ( ( ( a e. W /\ b e. ran ( T ` a ) ) /\ ( r e. dom S /\ a = ( S ` r ) ) ) -> E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) | 
						
							| 114 | 74 80 113 | reximssdv |  |-  ( ( a e. W /\ b e. ran ( T ` a ) ) -> E. r e. ( `' S " { a } ) E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) | 
						
							| 115 | 1 2 3 4 5 6 7 | efgrelexlema |  |-  ( a L b <-> E. r e. ( `' S " { a } ) E. s e. ( `' S " { b } ) ( r ` 0 ) = ( s ` 0 ) ) | 
						
							| 116 | 114 115 | sylibr |  |-  ( ( a e. W /\ b e. ran ( T ` a ) ) -> a L b ) | 
						
							| 117 |  | vex |  |-  b e. _V | 
						
							| 118 |  | vex |  |-  a e. _V | 
						
							| 119 | 117 118 | elec |  |-  ( b e. [ a ] L <-> a L b ) | 
						
							| 120 | 116 119 | sylibr |  |-  ( ( a e. W /\ b e. ran ( T ` a ) ) -> b e. [ a ] L ) | 
						
							| 121 | 120 | ex |  |-  ( a e. W -> ( b e. ran ( T ` a ) -> b e. [ a ] L ) ) | 
						
							| 122 | 121 | ssrdv |  |-  ( a e. W -> ran ( T ` a ) C_ [ a ] L ) | 
						
							| 123 | 122 | rgen |  |-  A. a e. W ran ( T ` a ) C_ [ a ] L | 
						
							| 124 | 1 | fvexi |  |-  W e. _V | 
						
							| 125 |  | erex |  |-  ( L Er W -> ( W e. _V -> L e. _V ) ) | 
						
							| 126 | 71 124 125 | mp2 |  |-  L e. _V | 
						
							| 127 |  | ereq1 |  |-  ( r = L -> ( r Er W <-> L Er W ) ) | 
						
							| 128 |  | eceq2 |  |-  ( r = L -> [ a ] r = [ a ] L ) | 
						
							| 129 | 128 | sseq2d |  |-  ( r = L -> ( ran ( T ` a ) C_ [ a ] r <-> ran ( T ` a ) C_ [ a ] L ) ) | 
						
							| 130 | 129 | ralbidv |  |-  ( r = L -> ( A. a e. W ran ( T ` a ) C_ [ a ] r <-> A. a e. W ran ( T ` a ) C_ [ a ] L ) ) | 
						
							| 131 | 127 130 | anbi12d |  |-  ( r = L -> ( ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) <-> ( L Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] L ) ) ) | 
						
							| 132 | 126 131 | elab |  |-  ( L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } <-> ( L Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] L ) ) | 
						
							| 133 | 71 123 132 | mpbir2an |  |-  L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } | 
						
							| 134 |  | intss1 |  |-  ( L e. { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } -> |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } C_ L ) | 
						
							| 135 | 133 134 | ax-mp |  |-  |^| { r | ( r Er W /\ A. a e. W ran ( T ` a ) C_ [ a ] r ) } C_ L | 
						
							| 136 | 8 135 | eqsstri |  |-  .~ C_ L |