Step |
Hyp |
Ref |
Expression |
1 |
|
ismbf3d.1 |
|- ( ph -> F : A --> RR ) |
2 |
|
ismbf3d.2 |
|- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
3 |
|
fimacnv |
|- ( F : A --> RR -> ( `' F " RR ) = A ) |
4 |
1 3
|
syl |
|- ( ph -> ( `' F " RR ) = A ) |
5 |
|
imaiun |
|- ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = U_ y e. NN ( `' F " ( -u y (,) +oo ) ) |
6 |
|
ioossre |
|- ( -u y (,) +oo ) C_ RR |
7 |
6
|
rgenw |
|- A. y e. NN ( -u y (,) +oo ) C_ RR |
8 |
|
iunss |
|- ( U_ y e. NN ( -u y (,) +oo ) C_ RR <-> A. y e. NN ( -u y (,) +oo ) C_ RR ) |
9 |
7 8
|
mpbir |
|- U_ y e. NN ( -u y (,) +oo ) C_ RR |
10 |
|
renegcl |
|- ( z e. RR -> -u z e. RR ) |
11 |
|
arch |
|- ( -u z e. RR -> E. y e. NN -u z < y ) |
12 |
10 11
|
syl |
|- ( z e. RR -> E. y e. NN -u z < y ) |
13 |
|
simpl |
|- ( ( z e. RR /\ y e. NN ) -> z e. RR ) |
14 |
13
|
biantrurd |
|- ( ( z e. RR /\ y e. NN ) -> ( -u y < z <-> ( z e. RR /\ -u y < z ) ) ) |
15 |
|
nnre |
|- ( y e. NN -> y e. RR ) |
16 |
|
ltnegcon1 |
|- ( ( z e. RR /\ y e. RR ) -> ( -u z < y <-> -u y < z ) ) |
17 |
15 16
|
sylan2 |
|- ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> -u y < z ) ) |
18 |
15
|
adantl |
|- ( ( z e. RR /\ y e. NN ) -> y e. RR ) |
19 |
18
|
renegcld |
|- ( ( z e. RR /\ y e. NN ) -> -u y e. RR ) |
20 |
19
|
rexrd |
|- ( ( z e. RR /\ y e. NN ) -> -u y e. RR* ) |
21 |
|
elioopnf |
|- ( -u y e. RR* -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) |
22 |
20 21
|
syl |
|- ( ( z e. RR /\ y e. NN ) -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) |
23 |
14 17 22
|
3bitr4d |
|- ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> z e. ( -u y (,) +oo ) ) ) |
24 |
23
|
rexbidva |
|- ( z e. RR -> ( E. y e. NN -u z < y <-> E. y e. NN z e. ( -u y (,) +oo ) ) ) |
25 |
12 24
|
mpbid |
|- ( z e. RR -> E. y e. NN z e. ( -u y (,) +oo ) ) |
26 |
|
eliun |
|- ( z e. U_ y e. NN ( -u y (,) +oo ) <-> E. y e. NN z e. ( -u y (,) +oo ) ) |
27 |
25 26
|
sylibr |
|- ( z e. RR -> z e. U_ y e. NN ( -u y (,) +oo ) ) |
28 |
27
|
ssriv |
|- RR C_ U_ y e. NN ( -u y (,) +oo ) |
29 |
9 28
|
eqssi |
|- U_ y e. NN ( -u y (,) +oo ) = RR |
30 |
29
|
imaeq2i |
|- ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = ( `' F " RR ) |
31 |
5 30
|
eqtr3i |
|- U_ y e. NN ( `' F " ( -u y (,) +oo ) ) = ( `' F " RR ) |
32 |
2
|
ralrimiva |
|- ( ph -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) |
33 |
15
|
renegcld |
|- ( y e. NN -> -u y e. RR ) |
34 |
|
oveq1 |
|- ( x = -u y -> ( x (,) +oo ) = ( -u y (,) +oo ) ) |
35 |
34
|
imaeq2d |
|- ( x = -u y -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( -u y (,) +oo ) ) ) |
36 |
35
|
eleq1d |
|- ( x = -u y -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) ) |
37 |
36
|
rspccva |
|- ( ( A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol /\ -u y e. RR ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
38 |
32 33 37
|
syl2an |
|- ( ( ph /\ y e. NN ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
39 |
38
|
ralrimiva |
|- ( ph -> A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
40 |
|
iunmbl |
|- ( A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
41 |
39 40
|
syl |
|- ( ph -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
42 |
31 41
|
eqeltrrid |
|- ( ph -> ( `' F " RR ) e. dom vol ) |
43 |
4 42
|
eqeltrrd |
|- ( ph -> A e. dom vol ) |
44 |
|
imaiun |
|- ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) |
45 |
|
eliun |
|- ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
46 |
|
3simpb |
|- ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) ) |
47 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> z e. RR ) |
48 |
|
nnrp |
|- ( y e. NN -> y e. RR+ ) |
49 |
48
|
ad2antrl |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> y e. RR+ ) |
50 |
49
|
rpreccld |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( 1 / y ) e. RR+ ) |
51 |
47 50
|
ltsubrpd |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) < z ) |
52 |
|
simprr |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> x e. RR ) |
53 |
|
simpr |
|- ( ( ph /\ z e. RR ) -> z e. RR ) |
54 |
|
nnrecre |
|- ( y e. NN -> ( 1 / y ) e. RR ) |
55 |
|
resubcl |
|- ( ( z e. RR /\ ( 1 / y ) e. RR ) -> ( z - ( 1 / y ) ) e. RR ) |
56 |
53 54 55
|
syl2an |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR ) |
57 |
56
|
adantrr |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) e. RR ) |
58 |
|
lelttr |
|- ( ( x e. RR /\ ( z - ( 1 / y ) ) e. RR /\ z e. RR ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) |
59 |
52 57 47 58
|
syl3anc |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) |
60 |
51 59
|
mpan2d |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) |
61 |
60
|
anassrs |
|- ( ( ( ( ph /\ z e. RR ) /\ y e. NN ) /\ x e. RR ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) |
62 |
61
|
imdistanda |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
63 |
46 62
|
syl5 |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
64 |
|
mnfxr |
|- -oo e. RR* |
65 |
|
elioc2 |
|- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
66 |
64 56 65
|
sylancr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
67 |
|
rexr |
|- ( z e. RR -> z e. RR* ) |
68 |
67
|
adantl |
|- ( ( ph /\ z e. RR ) -> z e. RR* ) |
69 |
|
elioomnf |
|- ( z e. RR* -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
70 |
68 69
|
syl |
|- ( ( ph /\ z e. RR ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
71 |
70
|
adantr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
72 |
63 66 71
|
3imtr4d |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) |
73 |
72
|
rexlimdva |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) |
74 |
73 70
|
sylibd |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
75 |
|
simprl |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x e. RR ) |
76 |
75
|
adantr |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. RR ) |
77 |
76
|
mnfltd |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> -oo < x ) |
78 |
56
|
ad2ant2r |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( z - ( 1 / y ) ) e. RR ) |
79 |
54
|
ad2antrl |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) e. RR ) |
80 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> z e. RR ) |
81 |
80
|
adantr |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> z e. RR ) |
82 |
|
simprr |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) < ( z - x ) ) |
83 |
79 81 76 82
|
ltsub13d |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x < ( z - ( 1 / y ) ) ) |
84 |
76 78 83
|
ltled |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x <_ ( z - ( 1 / y ) ) ) |
85 |
66
|
ad2ant2r |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
86 |
76 77 84 85
|
mpbir3and |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
87 |
80 75
|
resubcld |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( z - x ) e. RR ) |
88 |
|
simprr |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x < z ) |
89 |
75 80
|
posdifd |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( x < z <-> 0 < ( z - x ) ) ) |
90 |
88 89
|
mpbid |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> 0 < ( z - x ) ) |
91 |
|
nnrecl |
|- ( ( ( z - x ) e. RR /\ 0 < ( z - x ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) |
92 |
87 90 91
|
syl2anc |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) |
93 |
86 92
|
reximddv |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
94 |
93
|
ex |
|- ( ( ph /\ z e. RR ) -> ( ( x e. RR /\ x < z ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
95 |
74 94
|
impbid |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ x < z ) ) ) |
96 |
95 70
|
bitr4d |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) |
97 |
45 96
|
syl5bb |
|- ( ( ph /\ z e. RR ) -> ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) |
98 |
97
|
eqrdv |
|- ( ( ph /\ z e. RR ) -> U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) = ( -oo (,) z ) ) |
99 |
98
|
imaeq2d |
|- ( ( ph /\ z e. RR ) -> ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) |
100 |
44 99
|
eqtr3id |
|- ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) |
101 |
1
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> F : A --> RR ) |
102 |
|
ffun |
|- ( F : A --> RR -> Fun F ) |
103 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
104 |
|
imadif |
|- ( Fun `' `' F -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) |
105 |
101 102 103 104
|
4syl |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) |
106 |
64
|
a1i |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo e. RR* ) |
107 |
56
|
rexrd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR* ) |
108 |
|
pnfxr |
|- +oo e. RR* |
109 |
108
|
a1i |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> +oo e. RR* ) |
110 |
56
|
mnfltd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo < ( z - ( 1 / y ) ) ) |
111 |
56
|
ltpnfd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) < +oo ) |
112 |
|
df-ioc |
|- (,] = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w <_ v ) } ) |
113 |
|
df-ioo |
|- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
114 |
|
xrltnle |
|- ( ( ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( z - ( 1 / y ) ) < x <-> -. x <_ ( z - ( 1 / y ) ) ) ) |
115 |
|
xrlelttr |
|- ( ( x e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) -> x < +oo ) ) |
116 |
|
xrlttr |
|- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < x ) -> -oo < x ) ) |
117 |
112 113 114 113 115 116
|
ixxun |
|- ( ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) /\ ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) |
118 |
106 107 109 110 111 117
|
syl32anc |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) |
119 |
|
uncom |
|- ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
120 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
121 |
118 119 120
|
3eqtr3g |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR ) |
122 |
|
ioossre |
|- ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR |
123 |
|
incom |
|- ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) |
124 |
112 113 114
|
ixxdisj |
|- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
125 |
64 108 124
|
mp3an13 |
|- ( ( z - ( 1 / y ) ) e. RR* -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
126 |
107 125
|
syl |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
127 |
123 126
|
eqtrid |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) |
128 |
|
uneqdifeq |
|- ( ( ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR /\ ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
129 |
122 127 128
|
sylancr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
130 |
121 129
|
mpbid |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) |
131 |
130
|
imaeq2d |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
132 |
105 131
|
eqtr3d |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
133 |
42
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " RR ) e. dom vol ) |
134 |
|
oveq1 |
|- ( x = ( z - ( 1 / y ) ) -> ( x (,) +oo ) = ( ( z - ( 1 / y ) ) (,) +oo ) ) |
135 |
134
|
imaeq2d |
|- ( x = ( z - ( 1 / y ) ) -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) |
136 |
135
|
eleq1d |
|- ( x = ( z - ( 1 / y ) ) -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) ) |
137 |
32
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) |
138 |
136 137 56
|
rspcdva |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) |
139 |
|
difmbl |
|- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) |
140 |
133 138 139
|
syl2anc |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) |
141 |
132 140
|
eqeltrrd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
142 |
141
|
ralrimiva |
|- ( ( ph /\ z e. RR ) -> A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
143 |
|
iunmbl |
|- ( A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
144 |
142 143
|
syl |
|- ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
145 |
100 144
|
eqeltrrd |
|- ( ( ph /\ z e. RR ) -> ( `' F " ( -oo (,) z ) ) e. dom vol ) |
146 |
145
|
ralrimiva |
|- ( ph -> A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol ) |
147 |
|
oveq2 |
|- ( z = x -> ( -oo (,) z ) = ( -oo (,) x ) ) |
148 |
147
|
imaeq2d |
|- ( z = x -> ( `' F " ( -oo (,) z ) ) = ( `' F " ( -oo (,) x ) ) ) |
149 |
148
|
eleq1d |
|- ( z = x -> ( ( `' F " ( -oo (,) z ) ) e. dom vol <-> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) |
150 |
149
|
cbvralvw |
|- ( A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol <-> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) |
151 |
146 150
|
sylib |
|- ( ph -> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) |
152 |
151
|
r19.21bi |
|- ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
153 |
1 43 2 152
|
ismbf2d |
|- ( ph -> F e. MblFn ) |