| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismbf3d.1 |
|- ( ph -> F : A --> RR ) |
| 2 |
|
ismbf3d.2 |
|- ( ( ph /\ x e. RR ) -> ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 3 |
|
fimacnv |
|- ( F : A --> RR -> ( `' F " RR ) = A ) |
| 4 |
1 3
|
syl |
|- ( ph -> ( `' F " RR ) = A ) |
| 5 |
|
imaiun |
|- ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = U_ y e. NN ( `' F " ( -u y (,) +oo ) ) |
| 6 |
|
ioossre |
|- ( -u y (,) +oo ) C_ RR |
| 7 |
6
|
rgenw |
|- A. y e. NN ( -u y (,) +oo ) C_ RR |
| 8 |
|
iunss |
|- ( U_ y e. NN ( -u y (,) +oo ) C_ RR <-> A. y e. NN ( -u y (,) +oo ) C_ RR ) |
| 9 |
7 8
|
mpbir |
|- U_ y e. NN ( -u y (,) +oo ) C_ RR |
| 10 |
|
renegcl |
|- ( z e. RR -> -u z e. RR ) |
| 11 |
|
arch |
|- ( -u z e. RR -> E. y e. NN -u z < y ) |
| 12 |
10 11
|
syl |
|- ( z e. RR -> E. y e. NN -u z < y ) |
| 13 |
|
simpl |
|- ( ( z e. RR /\ y e. NN ) -> z e. RR ) |
| 14 |
13
|
biantrurd |
|- ( ( z e. RR /\ y e. NN ) -> ( -u y < z <-> ( z e. RR /\ -u y < z ) ) ) |
| 15 |
|
nnre |
|- ( y e. NN -> y e. RR ) |
| 16 |
|
ltnegcon1 |
|- ( ( z e. RR /\ y e. RR ) -> ( -u z < y <-> -u y < z ) ) |
| 17 |
15 16
|
sylan2 |
|- ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> -u y < z ) ) |
| 18 |
15
|
adantl |
|- ( ( z e. RR /\ y e. NN ) -> y e. RR ) |
| 19 |
18
|
renegcld |
|- ( ( z e. RR /\ y e. NN ) -> -u y e. RR ) |
| 20 |
19
|
rexrd |
|- ( ( z e. RR /\ y e. NN ) -> -u y e. RR* ) |
| 21 |
|
elioopnf |
|- ( -u y e. RR* -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( z e. RR /\ y e. NN ) -> ( z e. ( -u y (,) +oo ) <-> ( z e. RR /\ -u y < z ) ) ) |
| 23 |
14 17 22
|
3bitr4d |
|- ( ( z e. RR /\ y e. NN ) -> ( -u z < y <-> z e. ( -u y (,) +oo ) ) ) |
| 24 |
23
|
rexbidva |
|- ( z e. RR -> ( E. y e. NN -u z < y <-> E. y e. NN z e. ( -u y (,) +oo ) ) ) |
| 25 |
12 24
|
mpbid |
|- ( z e. RR -> E. y e. NN z e. ( -u y (,) +oo ) ) |
| 26 |
|
eliun |
|- ( z e. U_ y e. NN ( -u y (,) +oo ) <-> E. y e. NN z e. ( -u y (,) +oo ) ) |
| 27 |
25 26
|
sylibr |
|- ( z e. RR -> z e. U_ y e. NN ( -u y (,) +oo ) ) |
| 28 |
27
|
ssriv |
|- RR C_ U_ y e. NN ( -u y (,) +oo ) |
| 29 |
9 28
|
eqssi |
|- U_ y e. NN ( -u y (,) +oo ) = RR |
| 30 |
29
|
imaeq2i |
|- ( `' F " U_ y e. NN ( -u y (,) +oo ) ) = ( `' F " RR ) |
| 31 |
5 30
|
eqtr3i |
|- U_ y e. NN ( `' F " ( -u y (,) +oo ) ) = ( `' F " RR ) |
| 32 |
2
|
ralrimiva |
|- ( ph -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 33 |
15
|
renegcld |
|- ( y e. NN -> -u y e. RR ) |
| 34 |
|
oveq1 |
|- ( x = -u y -> ( x (,) +oo ) = ( -u y (,) +oo ) ) |
| 35 |
34
|
imaeq2d |
|- ( x = -u y -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( -u y (,) +oo ) ) ) |
| 36 |
35
|
eleq1d |
|- ( x = -u y -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) ) |
| 37 |
36
|
rspccva |
|- ( ( A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol /\ -u y e. RR ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 38 |
32 33 37
|
syl2an |
|- ( ( ph /\ y e. NN ) -> ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 39 |
38
|
ralrimiva |
|- ( ph -> A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 40 |
|
iunmbl |
|- ( A. y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 41 |
39 40
|
syl |
|- ( ph -> U_ y e. NN ( `' F " ( -u y (,) +oo ) ) e. dom vol ) |
| 42 |
31 41
|
eqeltrrid |
|- ( ph -> ( `' F " RR ) e. dom vol ) |
| 43 |
4 42
|
eqeltrrd |
|- ( ph -> A e. dom vol ) |
| 44 |
|
imaiun |
|- ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 45 |
|
eliun |
|- ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 46 |
|
3simpb |
|- ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) ) |
| 47 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> z e. RR ) |
| 48 |
|
nnrp |
|- ( y e. NN -> y e. RR+ ) |
| 49 |
48
|
ad2antrl |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> y e. RR+ ) |
| 50 |
49
|
rpreccld |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( 1 / y ) e. RR+ ) |
| 51 |
47 50
|
ltsubrpd |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) < z ) |
| 52 |
|
simprr |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> x e. RR ) |
| 53 |
|
simpr |
|- ( ( ph /\ z e. RR ) -> z e. RR ) |
| 54 |
|
nnrecre |
|- ( y e. NN -> ( 1 / y ) e. RR ) |
| 55 |
|
resubcl |
|- ( ( z e. RR /\ ( 1 / y ) e. RR ) -> ( z - ( 1 / y ) ) e. RR ) |
| 56 |
53 54 55
|
syl2an |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR ) |
| 57 |
56
|
adantrr |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( z - ( 1 / y ) ) e. RR ) |
| 58 |
|
lelttr |
|- ( ( x e. RR /\ ( z - ( 1 / y ) ) e. RR /\ z e. RR ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) |
| 59 |
52 57 47 58
|
syl3anc |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < z ) -> x < z ) ) |
| 60 |
51 59
|
mpan2d |
|- ( ( ( ph /\ z e. RR ) /\ ( y e. NN /\ x e. RR ) ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) |
| 61 |
60
|
anassrs |
|- ( ( ( ( ph /\ z e. RR ) /\ y e. NN ) /\ x e. RR ) -> ( x <_ ( z - ( 1 / y ) ) -> x < z ) ) |
| 62 |
61
|
imdistanda |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
| 63 |
46 62
|
syl5 |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
| 64 |
|
mnfxr |
|- -oo e. RR* |
| 65 |
|
elioc2 |
|- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
| 66 |
64 56 65
|
sylancr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
| 67 |
|
rexr |
|- ( z e. RR -> z e. RR* ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ z e. RR ) -> z e. RR* ) |
| 69 |
|
elioomnf |
|- ( z e. RR* -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
| 70 |
68 69
|
syl |
|- ( ( ph /\ z e. RR ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
| 71 |
70
|
adantr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,) z ) <-> ( x e. RR /\ x < z ) ) ) |
| 72 |
63 66 71
|
3imtr4d |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) |
| 73 |
72
|
rexlimdva |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> x e. ( -oo (,) z ) ) ) |
| 74 |
73 70
|
sylibd |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) -> ( x e. RR /\ x < z ) ) ) |
| 75 |
|
simprl |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x e. RR ) |
| 76 |
75
|
adantr |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. RR ) |
| 77 |
76
|
mnfltd |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> -oo < x ) |
| 78 |
56
|
ad2ant2r |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( z - ( 1 / y ) ) e. RR ) |
| 79 |
54
|
ad2antrl |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) e. RR ) |
| 80 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> z e. RR ) |
| 81 |
80
|
adantr |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> z e. RR ) |
| 82 |
|
simprr |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( 1 / y ) < ( z - x ) ) |
| 83 |
79 81 76 82
|
ltsub13d |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x < ( z - ( 1 / y ) ) ) |
| 84 |
76 78 83
|
ltled |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x <_ ( z - ( 1 / y ) ) ) |
| 85 |
66
|
ad2ant2r |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> ( x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ -oo < x /\ x <_ ( z - ( 1 / y ) ) ) ) ) |
| 86 |
76 77 84 85
|
mpbir3and |
|- ( ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) /\ ( y e. NN /\ ( 1 / y ) < ( z - x ) ) ) -> x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 87 |
80 75
|
resubcld |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( z - x ) e. RR ) |
| 88 |
|
simprr |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> x < z ) |
| 89 |
75 80
|
posdifd |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> ( x < z <-> 0 < ( z - x ) ) ) |
| 90 |
88 89
|
mpbid |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> 0 < ( z - x ) ) |
| 91 |
|
nnrecl |
|- ( ( ( z - x ) e. RR /\ 0 < ( z - x ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) |
| 92 |
87 90 91
|
syl2anc |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN ( 1 / y ) < ( z - x ) ) |
| 93 |
86 92
|
reximddv |
|- ( ( ( ph /\ z e. RR ) /\ ( x e. RR /\ x < z ) ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 94 |
93
|
ex |
|- ( ( ph /\ z e. RR ) -> ( ( x e. RR /\ x < z ) -> E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 95 |
74 94
|
impbid |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> ( x e. RR /\ x < z ) ) ) |
| 96 |
95 70
|
bitr4d |
|- ( ( ph /\ z e. RR ) -> ( E. y e. NN x e. ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) |
| 97 |
45 96
|
bitrid |
|- ( ( ph /\ z e. RR ) -> ( x e. U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) <-> x e. ( -oo (,) z ) ) ) |
| 98 |
97
|
eqrdv |
|- ( ( ph /\ z e. RR ) -> U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) = ( -oo (,) z ) ) |
| 99 |
98
|
imaeq2d |
|- ( ( ph /\ z e. RR ) -> ( `' F " U_ y e. NN ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) |
| 100 |
44 99
|
eqtr3id |
|- ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( `' F " ( -oo (,) z ) ) ) |
| 101 |
1
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> F : A --> RR ) |
| 102 |
|
ffun |
|- ( F : A --> RR -> Fun F ) |
| 103 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
| 104 |
|
imadif |
|- ( Fun `' `' F -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) |
| 105 |
101 102 103 104
|
4syl |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) ) |
| 106 |
64
|
a1i |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo e. RR* ) |
| 107 |
56
|
rexrd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) e. RR* ) |
| 108 |
|
pnfxr |
|- +oo e. RR* |
| 109 |
108
|
a1i |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> +oo e. RR* ) |
| 110 |
56
|
mnfltd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> -oo < ( z - ( 1 / y ) ) ) |
| 111 |
56
|
ltpnfd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( z - ( 1 / y ) ) < +oo ) |
| 112 |
|
df-ioc |
|- (,] = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w <_ v ) } ) |
| 113 |
|
df-ioo |
|- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
| 114 |
|
xrltnle |
|- ( ( ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( z - ( 1 / y ) ) < x <-> -. x <_ ( z - ( 1 / y ) ) ) ) |
| 115 |
|
xrlelttr |
|- ( ( x e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( x <_ ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) -> x < +oo ) ) |
| 116 |
|
xrlttr |
|- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ x e. RR* ) -> ( ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < x ) -> -oo < x ) ) |
| 117 |
112 113 114 113 115 116
|
ixxun |
|- ( ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) /\ ( -oo < ( z - ( 1 / y ) ) /\ ( z - ( 1 / y ) ) < +oo ) ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 118 |
106 107 109 110 111 117
|
syl32anc |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 119 |
|
uncom |
|- ( ( -oo (,] ( z - ( 1 / y ) ) ) u. ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 120 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
| 121 |
118 119 120
|
3eqtr3g |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR ) |
| 122 |
|
ioossre |
|- ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR |
| 123 |
|
incom |
|- ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) |
| 124 |
112 113 114
|
ixxdisj |
|- ( ( -oo e. RR* /\ ( z - ( 1 / y ) ) e. RR* /\ +oo e. RR* ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
| 125 |
64 108 124
|
mp3an13 |
|- ( ( z - ( 1 / y ) ) e. RR* -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
| 126 |
107 125
|
syl |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( -oo (,] ( z - ( 1 / y ) ) ) i^i ( ( z - ( 1 / y ) ) (,) +oo ) ) = (/) ) |
| 127 |
123 126
|
eqtrid |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) |
| 128 |
|
uneqdifeq |
|- ( ( ( ( z - ( 1 / y ) ) (,) +oo ) C_ RR /\ ( ( ( z - ( 1 / y ) ) (,) +oo ) i^i ( -oo (,] ( z - ( 1 / y ) ) ) ) = (/) ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 129 |
122 127 128
|
sylancr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( ( ( z - ( 1 / y ) ) (,) +oo ) u. ( -oo (,] ( z - ( 1 / y ) ) ) ) = RR <-> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 130 |
121 129
|
mpbid |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) = ( -oo (,] ( z - ( 1 / y ) ) ) ) |
| 131 |
130
|
imaeq2d |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( RR \ ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 132 |
105 131
|
eqtr3d |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) = ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) ) |
| 133 |
42
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " RR ) e. dom vol ) |
| 134 |
|
oveq1 |
|- ( x = ( z - ( 1 / y ) ) -> ( x (,) +oo ) = ( ( z - ( 1 / y ) ) (,) +oo ) ) |
| 135 |
134
|
imaeq2d |
|- ( x = ( z - ( 1 / y ) ) -> ( `' F " ( x (,) +oo ) ) = ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) |
| 136 |
135
|
eleq1d |
|- ( x = ( z - ( 1 / y ) ) -> ( ( `' F " ( x (,) +oo ) ) e. dom vol <-> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) ) |
| 137 |
32
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> A. x e. RR ( `' F " ( x (,) +oo ) ) e. dom vol ) |
| 138 |
136 137 56
|
rspcdva |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) |
| 139 |
|
difmbl |
|- ( ( ( `' F " RR ) e. dom vol /\ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) e. dom vol ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) |
| 140 |
133 138 139
|
syl2anc |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( ( `' F " RR ) \ ( `' F " ( ( z - ( 1 / y ) ) (,) +oo ) ) ) e. dom vol ) |
| 141 |
132 140
|
eqeltrrd |
|- ( ( ( ph /\ z e. RR ) /\ y e. NN ) -> ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 142 |
141
|
ralrimiva |
|- ( ( ph /\ z e. RR ) -> A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 143 |
|
iunmbl |
|- ( A. y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 144 |
142 143
|
syl |
|- ( ( ph /\ z e. RR ) -> U_ y e. NN ( `' F " ( -oo (,] ( z - ( 1 / y ) ) ) ) e. dom vol ) |
| 145 |
100 144
|
eqeltrrd |
|- ( ( ph /\ z e. RR ) -> ( `' F " ( -oo (,) z ) ) e. dom vol ) |
| 146 |
145
|
ralrimiva |
|- ( ph -> A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol ) |
| 147 |
|
oveq2 |
|- ( z = x -> ( -oo (,) z ) = ( -oo (,) x ) ) |
| 148 |
147
|
imaeq2d |
|- ( z = x -> ( `' F " ( -oo (,) z ) ) = ( `' F " ( -oo (,) x ) ) ) |
| 149 |
148
|
eleq1d |
|- ( z = x -> ( ( `' F " ( -oo (,) z ) ) e. dom vol <-> ( `' F " ( -oo (,) x ) ) e. dom vol ) ) |
| 150 |
149
|
cbvralvw |
|- ( A. z e. RR ( `' F " ( -oo (,) z ) ) e. dom vol <-> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 151 |
146 150
|
sylib |
|- ( ph -> A. x e. RR ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 152 |
151
|
r19.21bi |
|- ( ( ph /\ x e. RR ) -> ( `' F " ( -oo (,) x ) ) e. dom vol ) |
| 153 |
1 43 2 152
|
ismbf2d |
|- ( ph -> F e. MblFn ) |