| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptrecube.r |  |-  R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) | 
						
							| 2 |  | ptrecube.d |  |-  D = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 3 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 4 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 5 |  | fnconstg |  |-  ( ( topGen ` ran (,) ) e. Top -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) Fn ( 1 ... N ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) Fn ( 1 ... N ) | 
						
							| 7 |  | eqid |  |-  { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } = { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } | 
						
							| 8 | 7 | ptval |  |-  ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) Fn ( 1 ... N ) ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) = ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) ) | 
						
							| 9 | 3 6 8 | mp2an |  |-  ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) = ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) | 
						
							| 10 | 1 9 | eqtri |  |-  R = ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) | 
						
							| 11 | 10 | eleq2i |  |-  ( S e. R <-> S e. ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) ) | 
						
							| 12 |  | tg2 |  |-  ( ( S e. ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) /\ P e. S ) -> E. z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ( P e. z /\ z C_ S ) ) | 
						
							| 13 | 7 | elpt |  |-  ( z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } <-> E. g ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ z = X_ n e. ( 1 ... N ) ( g ` n ) ) ) | 
						
							| 14 |  | fvex |  |-  ( topGen ` ran (,) ) e. _V | 
						
							| 15 | 14 | fvconst2 |  |-  ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) = ( topGen ` ran (,) ) ) | 
						
							| 16 | 15 | eleq2d |  |-  ( n e. ( 1 ... N ) -> ( ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) <-> ( g ` n ) e. ( topGen ` ran (,) ) ) ) | 
						
							| 17 | 16 | ralbiia |  |-  ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) <-> A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) ) | 
						
							| 18 |  | elixp2 |  |-  ( P e. X_ n e. ( 1 ... N ) ( g ` n ) <-> ( P e. _V /\ P Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) ) | 
						
							| 19 | 18 | simp3bi |  |-  ( P e. X_ n e. ( 1 ... N ) ( g ` n ) -> A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) | 
						
							| 20 |  | r19.26 |  |-  ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) <-> ( A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) /\ A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) ) | 
						
							| 21 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 22 | 21 | eltopss |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( g ` n ) e. ( topGen ` ran (,) ) ) -> ( g ` n ) C_ RR ) | 
						
							| 23 | 4 22 | mpan |  |-  ( ( g ` n ) e. ( topGen ` ran (,) ) -> ( g ` n ) C_ RR ) | 
						
							| 24 | 23 | sselda |  |-  ( ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> ( P ` n ) e. RR ) | 
						
							| 25 | 2 | rexmet |  |-  D e. ( *Met ` RR ) | 
						
							| 26 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 27 | 2 26 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` D ) | 
						
							| 28 | 27 | mopni2 |  |-  ( ( D e. ( *Met ` RR ) /\ ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. y e. RR+ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) | 
						
							| 29 | 25 28 | mp3an1 |  |-  ( ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. y e. RR+ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) | 
						
							| 30 |  | r19.42v |  |-  ( E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) <-> ( ( P ` n ) e. RR /\ E. y e. RR+ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) | 
						
							| 31 | 24 29 30 | sylanbrc |  |-  ( ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) | 
						
							| 32 | 31 | ralimi |  |-  ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> A. n e. ( 1 ... N ) E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) | 
						
							| 33 |  | oveq2 |  |-  ( y = ( h ` n ) -> ( ( P ` n ) ( ball ` D ) y ) = ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) | 
						
							| 34 | 33 | sseq1d |  |-  ( y = ( h ` n ) -> ( ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) <-> ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) | 
						
							| 35 | 34 | anbi2d |  |-  ( y = ( h ` n ) -> ( ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) <-> ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) ) | 
						
							| 36 | 35 | ac6sfi |  |-  ( ( ( 1 ... N ) e. Fin /\ A. n e. ( 1 ... N ) E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) -> E. h ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) ) | 
						
							| 37 | 3 32 36 | sylancr |  |-  ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. h ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) ) | 
						
							| 38 |  | 1rp |  |-  1 e. RR+ | 
						
							| 39 | 38 | a1i |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ ( 1 ... N ) = (/) ) -> 1 e. RR+ ) | 
						
							| 40 |  | frn |  |-  ( h : ( 1 ... N ) --> RR+ -> ran h C_ RR+ ) | 
						
							| 41 | 40 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h C_ RR+ ) | 
						
							| 42 |  | ffn |  |-  ( h : ( 1 ... N ) --> RR+ -> h Fn ( 1 ... N ) ) | 
						
							| 43 |  | fnfi |  |-  ( ( h Fn ( 1 ... N ) /\ ( 1 ... N ) e. Fin ) -> h e. Fin ) | 
						
							| 44 | 42 3 43 | sylancl |  |-  ( h : ( 1 ... N ) --> RR+ -> h e. Fin ) | 
						
							| 45 |  | rnfi |  |-  ( h e. Fin -> ran h e. Fin ) | 
						
							| 46 | 44 45 | syl |  |-  ( h : ( 1 ... N ) --> RR+ -> ran h e. Fin ) | 
						
							| 47 | 46 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h e. Fin ) | 
						
							| 48 |  | dm0rn0 |  |-  ( dom h = (/) <-> ran h = (/) ) | 
						
							| 49 |  | fdm |  |-  ( h : ( 1 ... N ) --> RR+ -> dom h = ( 1 ... N ) ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( h : ( 1 ... N ) --> RR+ -> ( dom h = (/) <-> ( 1 ... N ) = (/) ) ) | 
						
							| 51 | 48 50 | bitr3id |  |-  ( h : ( 1 ... N ) --> RR+ -> ( ran h = (/) <-> ( 1 ... N ) = (/) ) ) | 
						
							| 52 | 51 | necon3abid |  |-  ( h : ( 1 ... N ) --> RR+ -> ( ran h =/= (/) <-> -. ( 1 ... N ) = (/) ) ) | 
						
							| 53 | 52 | biimpar |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h =/= (/) ) | 
						
							| 54 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 55 | 40 54 | sstrdi |  |-  ( h : ( 1 ... N ) --> RR+ -> ran h C_ RR ) | 
						
							| 56 | 55 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h C_ RR ) | 
						
							| 57 |  | ltso |  |-  < Or RR | 
						
							| 58 |  | fiinfcl |  |-  ( ( < Or RR /\ ( ran h e. Fin /\ ran h =/= (/) /\ ran h C_ RR ) ) -> inf ( ran h , RR , < ) e. ran h ) | 
						
							| 59 | 57 58 | mpan |  |-  ( ( ran h e. Fin /\ ran h =/= (/) /\ ran h C_ RR ) -> inf ( ran h , RR , < ) e. ran h ) | 
						
							| 60 | 47 53 56 59 | syl3anc |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> inf ( ran h , RR , < ) e. ran h ) | 
						
							| 61 | 41 60 | sseldd |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> inf ( ran h , RR , < ) e. RR+ ) | 
						
							| 62 | 39 61 | ifclda |  |-  ( h : ( 1 ... N ) --> RR+ -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ ) | 
						
							| 63 | 62 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ ) | 
						
							| 64 | 62 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ ) | 
						
							| 65 | 64 | rpxrd |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* ) | 
						
							| 66 |  | ffvelcdm |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. RR+ ) | 
						
							| 67 | 66 | rpxrd |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. RR* ) | 
						
							| 68 |  | ne0i |  |-  ( n e. ( 1 ... N ) -> ( 1 ... N ) =/= (/) ) | 
						
							| 69 |  | ifnefalse |  |-  ( ( 1 ... N ) =/= (/) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) = inf ( ran h , RR , < ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( n e. ( 1 ... N ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) = inf ( ran h , RR , < ) ) | 
						
							| 71 | 70 | adantl |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) = inf ( ran h , RR , < ) ) | 
						
							| 72 | 55 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ran h C_ RR ) | 
						
							| 73 |  | 0re |  |-  0 e. RR | 
						
							| 74 |  | rpge0 |  |-  ( y e. RR+ -> 0 <_ y ) | 
						
							| 75 | 74 | rgen |  |-  A. y e. RR+ 0 <_ y | 
						
							| 76 |  | ssralv |  |-  ( ran h C_ RR+ -> ( A. y e. RR+ 0 <_ y -> A. y e. ran h 0 <_ y ) ) | 
						
							| 77 | 40 75 76 | mpisyl |  |-  ( h : ( 1 ... N ) --> RR+ -> A. y e. ran h 0 <_ y ) | 
						
							| 78 |  | breq1 |  |-  ( x = 0 -> ( x <_ y <-> 0 <_ y ) ) | 
						
							| 79 | 78 | ralbidv |  |-  ( x = 0 -> ( A. y e. ran h x <_ y <-> A. y e. ran h 0 <_ y ) ) | 
						
							| 80 | 79 | rspcev |  |-  ( ( 0 e. RR /\ A. y e. ran h 0 <_ y ) -> E. x e. RR A. y e. ran h x <_ y ) | 
						
							| 81 | 73 77 80 | sylancr |  |-  ( h : ( 1 ... N ) --> RR+ -> E. x e. RR A. y e. ran h x <_ y ) | 
						
							| 82 | 81 | adantr |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> E. x e. RR A. y e. ran h x <_ y ) | 
						
							| 83 |  | fnfvelrn |  |-  ( ( h Fn ( 1 ... N ) /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. ran h ) | 
						
							| 84 | 42 83 | sylan |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. ran h ) | 
						
							| 85 |  | infrelb |  |-  ( ( ran h C_ RR /\ E. x e. RR A. y e. ran h x <_ y /\ ( h ` n ) e. ran h ) -> inf ( ran h , RR , < ) <_ ( h ` n ) ) | 
						
							| 86 | 72 82 84 85 | syl3anc |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> inf ( ran h , RR , < ) <_ ( h ` n ) ) | 
						
							| 87 | 71 86 | eqbrtrd |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) | 
						
							| 88 | 65 67 87 | jca31 |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) ) | 
						
							| 89 |  | ssbl |  |-  ( ( ( D e. ( *Met ` RR ) /\ ( P ` n ) e. RR ) /\ ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) | 
						
							| 90 | 89 | 3expb |  |-  ( ( ( D e. ( *Met ` RR ) /\ ( P ` n ) e. RR ) /\ ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) | 
						
							| 91 | 25 90 | mpanl1 |  |-  ( ( ( P ` n ) e. RR /\ ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) | 
						
							| 92 | 91 | ancoms |  |-  ( ( ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) /\ ( P ` n ) e. RR ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) | 
						
							| 93 | 88 92 | sylan |  |-  ( ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) /\ ( P ` n ) e. RR ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) | 
						
							| 94 |  | sstr2 |  |-  ( ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) -> ( ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) /\ ( P ` n ) e. RR ) -> ( ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) | 
						
							| 96 | 95 | expimpd |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) | 
						
							| 97 | 96 | ralimdva |  |-  ( h : ( 1 ... N ) --> RR+ -> ( A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) -> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) | 
						
							| 98 | 97 | imp |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) | 
						
							| 99 | 2 | fveq2i |  |-  ( ball ` D ) = ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 100 | 99 | oveqi |  |-  ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) = ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) | 
						
							| 101 | 100 | sseq1i |  |-  ( ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) <-> ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) | 
						
							| 102 | 101 | ralbii |  |-  ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) <-> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) | 
						
							| 103 |  | nfv |  |-  F/ d A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) | 
						
							| 104 | 102 103 | nfxfr |  |-  F/ d A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) | 
						
							| 105 |  | oveq2 |  |-  ( d = if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) -> ( ( P ` n ) ( ball ` D ) d ) = ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) ) | 
						
							| 106 | 105 | sseq1d |  |-  ( d = if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) -> ( ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) <-> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) | 
						
							| 107 | 106 | ralbidv |  |-  ( d = if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) -> ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) <-> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) | 
						
							| 108 | 104 107 | rspce |  |-  ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 109 | 63 98 108 | syl2anc |  |-  ( ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 110 | 109 | exlimiv |  |-  ( E. h ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 111 | 37 110 | syl |  |-  ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 112 | 20 111 | sylbir |  |-  ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) /\ A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 113 | 19 112 | sylan2 |  |-  ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) /\ P e. X_ n e. ( 1 ... N ) ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 114 | 17 113 | sylanb |  |-  ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ P e. X_ n e. ( 1 ... N ) ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) | 
						
							| 115 |  | sstr2 |  |-  ( X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ X_ n e. ( 1 ... N ) ( g ` n ) -> ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 116 |  | ss2ixp |  |-  ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) -> X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ X_ n e. ( 1 ... N ) ( g ` n ) ) | 
						
							| 117 | 115 116 | syl11 |  |-  ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) -> X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 118 | 117 | reximdv |  |-  ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> ( E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 119 | 114 118 | syl5com |  |-  ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ P e. X_ n e. ( 1 ... N ) ( g ` n ) ) -> ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 120 | 119 | expimpd |  |-  ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) -> ( ( P e. X_ n e. ( 1 ... N ) ( g ` n ) /\ X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 121 |  | eleq2 |  |-  ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( P e. z <-> P e. X_ n e. ( 1 ... N ) ( g ` n ) ) ) | 
						
							| 122 |  | sseq1 |  |-  ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( z C_ S <-> X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) ) | 
						
							| 123 | 121 122 | anbi12d |  |-  ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( P e. z /\ z C_ S ) <-> ( P e. X_ n e. ( 1 ... N ) ( g ` n ) /\ X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) ) ) | 
						
							| 124 | 123 | imbi1d |  |-  ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) <-> ( ( P e. X_ n e. ( 1 ... N ) ( g ` n ) /\ X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) ) | 
						
							| 125 | 120 124 | syl5ibrcom |  |-  ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) -> ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) ) | 
						
							| 126 | 125 | 3ad2ant2 |  |-  ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) -> ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) ) | 
						
							| 127 | 126 | imp |  |-  ( ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ z = X_ n e. ( 1 ... N ) ( g ` n ) ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 128 | 127 | exlimiv |  |-  ( E. g ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ z = X_ n e. ( 1 ... N ) ( g ` n ) ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 129 | 13 128 | sylbi |  |-  ( z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) | 
						
							| 130 | 129 | rexlimiv |  |-  ( E. z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) | 
						
							| 131 | 12 130 | syl |  |-  ( ( S e. ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) /\ P e. S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) | 
						
							| 132 | 11 131 | sylanb |  |-  ( ( S e. R /\ P e. S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) |