| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptrecube.r |
|- R = ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) |
| 2 |
|
ptrecube.d |
|- D = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 3 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 4 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 5 |
|
fnconstg |
|- ( ( topGen ` ran (,) ) e. Top -> ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) Fn ( 1 ... N ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) Fn ( 1 ... N ) |
| 7 |
|
eqid |
|- { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } = { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } |
| 8 |
7
|
ptval |
|- ( ( ( 1 ... N ) e. Fin /\ ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) Fn ( 1 ... N ) ) -> ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) = ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) ) |
| 9 |
3 6 8
|
mp2an |
|- ( Xt_ ` ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ) = ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) |
| 10 |
1 9
|
eqtri |
|- R = ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) |
| 11 |
10
|
eleq2i |
|- ( S e. R <-> S e. ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) ) |
| 12 |
|
tg2 |
|- ( ( S e. ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) /\ P e. S ) -> E. z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ( P e. z /\ z C_ S ) ) |
| 13 |
7
|
elpt |
|- ( z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } <-> E. g ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ z = X_ n e. ( 1 ... N ) ( g ` n ) ) ) |
| 14 |
|
fvex |
|- ( topGen ` ran (,) ) e. _V |
| 15 |
14
|
fvconst2 |
|- ( n e. ( 1 ... N ) -> ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) = ( topGen ` ran (,) ) ) |
| 16 |
15
|
eleq2d |
|- ( n e. ( 1 ... N ) -> ( ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) <-> ( g ` n ) e. ( topGen ` ran (,) ) ) ) |
| 17 |
16
|
ralbiia |
|- ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) <-> A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) ) |
| 18 |
|
elixp2 |
|- ( P e. X_ n e. ( 1 ... N ) ( g ` n ) <-> ( P e. _V /\ P Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) ) |
| 19 |
18
|
simp3bi |
|- ( P e. X_ n e. ( 1 ... N ) ( g ` n ) -> A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) |
| 20 |
|
r19.26 |
|- ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) <-> ( A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) /\ A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) ) |
| 21 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 22 |
21
|
eltopss |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( g ` n ) e. ( topGen ` ran (,) ) ) -> ( g ` n ) C_ RR ) |
| 23 |
4 22
|
mpan |
|- ( ( g ` n ) e. ( topGen ` ran (,) ) -> ( g ` n ) C_ RR ) |
| 24 |
23
|
sselda |
|- ( ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> ( P ` n ) e. RR ) |
| 25 |
2
|
rexmet |
|- D e. ( *Met ` RR ) |
| 26 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
| 27 |
2 26
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` D ) |
| 28 |
27
|
mopni2 |
|- ( ( D e. ( *Met ` RR ) /\ ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. y e. RR+ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) |
| 29 |
25 28
|
mp3an1 |
|- ( ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. y e. RR+ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) |
| 30 |
|
r19.42v |
|- ( E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) <-> ( ( P ` n ) e. RR /\ E. y e. RR+ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) |
| 31 |
24 29 30
|
sylanbrc |
|- ( ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) |
| 32 |
31
|
ralimi |
|- ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> A. n e. ( 1 ... N ) E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) |
| 33 |
|
oveq2 |
|- ( y = ( h ` n ) -> ( ( P ` n ) ( ball ` D ) y ) = ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) |
| 34 |
33
|
sseq1d |
|- ( y = ( h ` n ) -> ( ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) <-> ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) |
| 35 |
34
|
anbi2d |
|- ( y = ( h ` n ) -> ( ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) <-> ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) ) |
| 36 |
35
|
ac6sfi |
|- ( ( ( 1 ... N ) e. Fin /\ A. n e. ( 1 ... N ) E. y e. RR+ ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) y ) C_ ( g ` n ) ) ) -> E. h ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) ) |
| 37 |
3 32 36
|
sylancr |
|- ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. h ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) ) |
| 38 |
|
1rp |
|- 1 e. RR+ |
| 39 |
38
|
a1i |
|- ( ( h : ( 1 ... N ) --> RR+ /\ ( 1 ... N ) = (/) ) -> 1 e. RR+ ) |
| 40 |
|
frn |
|- ( h : ( 1 ... N ) --> RR+ -> ran h C_ RR+ ) |
| 41 |
40
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h C_ RR+ ) |
| 42 |
|
ffn |
|- ( h : ( 1 ... N ) --> RR+ -> h Fn ( 1 ... N ) ) |
| 43 |
|
fnfi |
|- ( ( h Fn ( 1 ... N ) /\ ( 1 ... N ) e. Fin ) -> h e. Fin ) |
| 44 |
42 3 43
|
sylancl |
|- ( h : ( 1 ... N ) --> RR+ -> h e. Fin ) |
| 45 |
|
rnfi |
|- ( h e. Fin -> ran h e. Fin ) |
| 46 |
44 45
|
syl |
|- ( h : ( 1 ... N ) --> RR+ -> ran h e. Fin ) |
| 47 |
46
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h e. Fin ) |
| 48 |
|
dm0rn0 |
|- ( dom h = (/) <-> ran h = (/) ) |
| 49 |
|
fdm |
|- ( h : ( 1 ... N ) --> RR+ -> dom h = ( 1 ... N ) ) |
| 50 |
49
|
eqeq1d |
|- ( h : ( 1 ... N ) --> RR+ -> ( dom h = (/) <-> ( 1 ... N ) = (/) ) ) |
| 51 |
48 50
|
bitr3id |
|- ( h : ( 1 ... N ) --> RR+ -> ( ran h = (/) <-> ( 1 ... N ) = (/) ) ) |
| 52 |
51
|
necon3abid |
|- ( h : ( 1 ... N ) --> RR+ -> ( ran h =/= (/) <-> -. ( 1 ... N ) = (/) ) ) |
| 53 |
52
|
biimpar |
|- ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h =/= (/) ) |
| 54 |
|
rpssre |
|- RR+ C_ RR |
| 55 |
40 54
|
sstrdi |
|- ( h : ( 1 ... N ) --> RR+ -> ran h C_ RR ) |
| 56 |
55
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> ran h C_ RR ) |
| 57 |
|
ltso |
|- < Or RR |
| 58 |
|
fiinfcl |
|- ( ( < Or RR /\ ( ran h e. Fin /\ ran h =/= (/) /\ ran h C_ RR ) ) -> inf ( ran h , RR , < ) e. ran h ) |
| 59 |
57 58
|
mpan |
|- ( ( ran h e. Fin /\ ran h =/= (/) /\ ran h C_ RR ) -> inf ( ran h , RR , < ) e. ran h ) |
| 60 |
47 53 56 59
|
syl3anc |
|- ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> inf ( ran h , RR , < ) e. ran h ) |
| 61 |
41 60
|
sseldd |
|- ( ( h : ( 1 ... N ) --> RR+ /\ -. ( 1 ... N ) = (/) ) -> inf ( ran h , RR , < ) e. RR+ ) |
| 62 |
39 61
|
ifclda |
|- ( h : ( 1 ... N ) --> RR+ -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ ) |
| 63 |
62
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ ) |
| 64 |
62
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ ) |
| 65 |
64
|
rpxrd |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* ) |
| 66 |
|
ffvelcdm |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. RR+ ) |
| 67 |
66
|
rpxrd |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. RR* ) |
| 68 |
|
ne0i |
|- ( n e. ( 1 ... N ) -> ( 1 ... N ) =/= (/) ) |
| 69 |
|
ifnefalse |
|- ( ( 1 ... N ) =/= (/) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) = inf ( ran h , RR , < ) ) |
| 70 |
68 69
|
syl |
|- ( n e. ( 1 ... N ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) = inf ( ran h , RR , < ) ) |
| 71 |
70
|
adantl |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) = inf ( ran h , RR , < ) ) |
| 72 |
55
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ran h C_ RR ) |
| 73 |
|
0re |
|- 0 e. RR |
| 74 |
|
rpge0 |
|- ( y e. RR+ -> 0 <_ y ) |
| 75 |
74
|
rgen |
|- A. y e. RR+ 0 <_ y |
| 76 |
|
ssralv |
|- ( ran h C_ RR+ -> ( A. y e. RR+ 0 <_ y -> A. y e. ran h 0 <_ y ) ) |
| 77 |
40 75 76
|
mpisyl |
|- ( h : ( 1 ... N ) --> RR+ -> A. y e. ran h 0 <_ y ) |
| 78 |
|
breq1 |
|- ( x = 0 -> ( x <_ y <-> 0 <_ y ) ) |
| 79 |
78
|
ralbidv |
|- ( x = 0 -> ( A. y e. ran h x <_ y <-> A. y e. ran h 0 <_ y ) ) |
| 80 |
79
|
rspcev |
|- ( ( 0 e. RR /\ A. y e. ran h 0 <_ y ) -> E. x e. RR A. y e. ran h x <_ y ) |
| 81 |
73 77 80
|
sylancr |
|- ( h : ( 1 ... N ) --> RR+ -> E. x e. RR A. y e. ran h x <_ y ) |
| 82 |
81
|
adantr |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> E. x e. RR A. y e. ran h x <_ y ) |
| 83 |
|
fnfvelrn |
|- ( ( h Fn ( 1 ... N ) /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. ran h ) |
| 84 |
42 83
|
sylan |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( h ` n ) e. ran h ) |
| 85 |
|
infrelb |
|- ( ( ran h C_ RR /\ E. x e. RR A. y e. ran h x <_ y /\ ( h ` n ) e. ran h ) -> inf ( ran h , RR , < ) <_ ( h ` n ) ) |
| 86 |
72 82 84 85
|
syl3anc |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> inf ( ran h , RR , < ) <_ ( h ` n ) ) |
| 87 |
71 86
|
eqbrtrd |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) |
| 88 |
65 67 87
|
jca31 |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) ) |
| 89 |
|
ssbl |
|- ( ( ( D e. ( *Met ` RR ) /\ ( P ` n ) e. RR ) /\ ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) |
| 90 |
89
|
3expb |
|- ( ( ( D e. ( *Met ` RR ) /\ ( P ` n ) e. RR ) /\ ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) |
| 91 |
25 90
|
mpanl1 |
|- ( ( ( P ` n ) e. RR /\ ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) |
| 92 |
91
|
ancoms |
|- ( ( ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR* /\ ( h ` n ) e. RR* ) /\ if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) <_ ( h ` n ) ) /\ ( P ` n ) e. RR ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) |
| 93 |
88 92
|
sylan |
|- ( ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) /\ ( P ` n ) e. RR ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) ) |
| 94 |
|
sstr2 |
|- ( ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) -> ( ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) |
| 95 |
93 94
|
syl |
|- ( ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) /\ ( P ` n ) e. RR ) -> ( ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) |
| 96 |
95
|
expimpd |
|- ( ( h : ( 1 ... N ) --> RR+ /\ n e. ( 1 ... N ) ) -> ( ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) -> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) |
| 97 |
96
|
ralimdva |
|- ( h : ( 1 ... N ) --> RR+ -> ( A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) -> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) |
| 98 |
97
|
imp |
|- ( ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) |
| 99 |
2
|
fveq2i |
|- ( ball ` D ) = ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 100 |
99
|
oveqi |
|- ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) = ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) |
| 101 |
100
|
sseq1i |
|- ( ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) <-> ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) |
| 102 |
101
|
ralbii |
|- ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) <-> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) |
| 103 |
|
nfv |
|- F/ d A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) |
| 104 |
102 103
|
nfxfr |
|- F/ d A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) |
| 105 |
|
oveq2 |
|- ( d = if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) -> ( ( P ` n ) ( ball ` D ) d ) = ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) ) |
| 106 |
105
|
sseq1d |
|- ( d = if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) -> ( ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) <-> ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) |
| 107 |
106
|
ralbidv |
|- ( d = if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) -> ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) <-> A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) ) |
| 108 |
104 107
|
rspce |
|- ( ( if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) e. RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) if ( ( 1 ... N ) = (/) , 1 , inf ( ran h , RR , < ) ) ) C_ ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 109 |
63 98 108
|
syl2anc |
|- ( ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 110 |
109
|
exlimiv |
|- ( E. h ( h : ( 1 ... N ) --> RR+ /\ A. n e. ( 1 ... N ) ( ( P ` n ) e. RR /\ ( ( P ` n ) ( ball ` D ) ( h ` n ) ) C_ ( g ` n ) ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 111 |
37 110
|
syl |
|- ( A. n e. ( 1 ... N ) ( ( g ` n ) e. ( topGen ` ran (,) ) /\ ( P ` n ) e. ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 112 |
20 111
|
sylbir |
|- ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) /\ A. n e. ( 1 ... N ) ( P ` n ) e. ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 113 |
19 112
|
sylan2 |
|- ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( topGen ` ran (,) ) /\ P e. X_ n e. ( 1 ... N ) ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 114 |
17 113
|
sylanb |
|- ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ P e. X_ n e. ( 1 ... N ) ( g ` n ) ) -> E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) ) |
| 115 |
|
sstr2 |
|- ( X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ X_ n e. ( 1 ... N ) ( g ` n ) -> ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 116 |
|
ss2ixp |
|- ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) -> X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ X_ n e. ( 1 ... N ) ( g ` n ) ) |
| 117 |
115 116
|
syl11 |
|- ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> ( A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) -> X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 118 |
117
|
reximdv |
|- ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> ( E. d e. RR+ A. n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ ( g ` n ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 119 |
114 118
|
syl5com |
|- ( ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ P e. X_ n e. ( 1 ... N ) ( g ` n ) ) -> ( X_ n e. ( 1 ... N ) ( g ` n ) C_ S -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 120 |
119
|
expimpd |
|- ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) -> ( ( P e. X_ n e. ( 1 ... N ) ( g ` n ) /\ X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 121 |
|
eleq2 |
|- ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( P e. z <-> P e. X_ n e. ( 1 ... N ) ( g ` n ) ) ) |
| 122 |
|
sseq1 |
|- ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( z C_ S <-> X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) ) |
| 123 |
121 122
|
anbi12d |
|- ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( P e. z /\ z C_ S ) <-> ( P e. X_ n e. ( 1 ... N ) ( g ` n ) /\ X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) ) ) |
| 124 |
123
|
imbi1d |
|- ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) <-> ( ( P e. X_ n e. ( 1 ... N ) ( g ` n ) /\ X_ n e. ( 1 ... N ) ( g ` n ) C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) ) |
| 125 |
120 124
|
syl5ibrcom |
|- ( A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) -> ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) ) |
| 126 |
125
|
3ad2ant2 |
|- ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) -> ( z = X_ n e. ( 1 ... N ) ( g ` n ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) ) |
| 127 |
126
|
imp |
|- ( ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ z = X_ n e. ( 1 ... N ) ( g ` n ) ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 128 |
127
|
exlimiv |
|- ( E. g ( ( g Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( g ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. z e. Fin A. n e. ( ( 1 ... N ) \ z ) ( g ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ z = X_ n e. ( 1 ... N ) ( g ` n ) ) -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 129 |
13 128
|
sylbi |
|- ( z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } -> ( ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) ) |
| 130 |
129
|
rexlimiv |
|- ( E. z e. { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ( P e. z /\ z C_ S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) |
| 131 |
12 130
|
syl |
|- ( ( S e. ( topGen ` { x | E. h ( ( h Fn ( 1 ... N ) /\ A. n e. ( 1 ... N ) ( h ` n ) e. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) /\ E. w e. Fin A. n e. ( ( 1 ... N ) \ w ) ( h ` n ) = U. ( ( ( 1 ... N ) X. { ( topGen ` ran (,) ) } ) ` n ) ) /\ x = X_ n e. ( 1 ... N ) ( h ` n ) ) } ) /\ P e. S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) |
| 132 |
11 131
|
sylanb |
|- ( ( S e. R /\ P e. S ) -> E. d e. RR+ X_ n e. ( 1 ... N ) ( ( P ` n ) ( ball ` D ) d ) C_ S ) |