Metamath Proof Explorer


Theorem 0prjspnrel

Description: In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypotheses 0prjspnrel.e ˙=xy|xByBlSx=l·˙y
0prjspnrel.b B=BaseW0W
0prjspnrel.x ·˙=W
0prjspnrel.s S=BaseK
0prjspnrel.w W=KfreeLMod00
0prjspnrel.1 1˙=KunitVec000
Assertion 0prjspnrel KDivRingXBX˙1˙

Proof

Step Hyp Ref Expression
1 0prjspnrel.e ˙=xy|xByBlSx=l·˙y
2 0prjspnrel.b B=BaseW0W
3 0prjspnrel.x ·˙=W
4 0prjspnrel.s S=BaseK
5 0prjspnrel.w W=KfreeLMod00
6 0prjspnrel.1 1˙=KunitVec000
7 simpr KDivRingXBXB
8 2 5 6 0prjspnlem KDivRing1˙B
9 8 adantr KDivRingXB1˙B
10 ovexd KDivRingXB00V
11 difss BaseW0WBaseW
12 2 11 eqsstri BBaseW
13 12 sseli XBXBaseW
14 13 adantl KDivRingXBXBaseW
15 eqid BaseK=BaseK
16 eqid BaseW=BaseW
17 5 15 16 frlmbasf 00VXBaseWX:00BaseK
18 10 14 17 syl2anc KDivRingXBX:00BaseK
19 c0ex 0V
20 19 snid 00
21 fz0sn 00=0
22 20 21 eleqtrri 000
23 22 a1i KDivRingXB000
24 18 23 ffvelcdmd KDivRingXBX0BaseK
25 sneq n=X0n=X0
26 25 xpeq2d n=X000×n=00×X0
27 26 eqeq2d n=X0X=00×nX=00×X0
28 27 adantl KDivRingXBn=X0X=00×nX=00×X0
29 5 15 16 frlmbasmap 00VXBaseWXBaseK00
30 10 14 29 syl2anc KDivRingXBXBaseK00
31 fvex BaseKV
32 21 31 19 mapsnconst XBaseK00X=00×X0
33 30 32 syl KDivRingXBX=00×X0
34 24 28 33 rspcedvd KDivRingXBnBaseKX=00×n
35 simprl KDivRingXBnBaseKX=00×nnBaseK
36 35 4 eleqtrrdi KDivRingXBnBaseKX=00×nnS
37 oveq1 m=nm·˙1˙=n·˙1˙
38 37 eqeq2d m=nX=m·˙1˙X=n·˙1˙
39 38 adantl KDivRingXBnBaseKX=00×nm=nX=m·˙1˙X=n·˙1˙
40 ovexd KDivRingXBnBaseK00V
41 simpr KDivRingXBnBaseKnBaseK
42 8 ad2antrr KDivRingXBnBaseK1˙B
43 12 42 sselid KDivRingXBnBaseK1˙BaseW
44 eqid K=K
45 5 16 15 40 41 43 3 44 frlmvscafval KDivRingXBnBaseKn·˙1˙=00×nKf1˙
46 5 15 16 frlmbasf 00V1˙BaseW1˙:00BaseK
47 40 43 46 syl2anc KDivRingXBnBaseK1˙:00BaseK
48 drngring KDivRingKRing
49 eqid 1K=1K
50 15 49 ringidcl KRing1KBaseK
51 48 50 syl KDivRing1KBaseK
52 51 ad2antrr KDivRingXBnBaseK1KBaseK
53 52 snssd KDivRingXBnBaseK1KBaseK
54 6 a1i d001˙=KunitVec000
55 elfz1eq d00d=0
56 54 55 fveq12d d001˙d=KunitVec0000
57 56 adantl KDivRingXBnBaseKd001˙d=KunitVec0000
58 eqid KunitVec00=KunitVec00
59 simplll KDivRingXBnBaseKd00KDivRing
60 ovexd KDivRingXBnBaseKd0000V
61 22 a1i KDivRingXBnBaseKd00000
62 58 59 60 61 49 uvcvv1 KDivRingXBnBaseKd00KunitVec0000=1K
63 fvex KunitVec0000V
64 63 elsn KunitVec00001KKunitVec0000=1K
65 62 64 sylibr KDivRingXBnBaseKd00KunitVec00001K
66 57 65 eqeltrd KDivRingXBnBaseKd001˙d1K
67 66 ralrimiva KDivRingXBnBaseKd001˙d1K
68 fcdmssb 1KBaseKd001˙d1K1˙:00BaseK1˙:001K
69 53 67 68 syl2anc KDivRingXBnBaseK1˙:00BaseK1˙:001K
70 47 69 mpbid KDivRingXBnBaseK1˙:001K
71 vex nV
72 71 a1i KDivRingXBnBaseKnV
73 elsni c1Kc=1K
74 73 oveq2d c1KnKc=nK1K
75 48 ad2antrr KDivRingXBnBaseKKRing
76 15 44 49 ringridm KRingnBaseKnK1K=n
77 75 41 76 syl2anc KDivRingXBnBaseKnK1K=n
78 74 77 sylan9eqr KDivRingXBnBaseKc1KnKc=n
79 40 70 72 72 78 caofid2 KDivRingXBnBaseK00×nKf1˙=00×n
80 45 79 eqtrd KDivRingXBnBaseKn·˙1˙=00×n
81 80 eqeq2d KDivRingXBnBaseKX=n·˙1˙X=00×n
82 81 biimprd KDivRingXBnBaseKX=00×nX=n·˙1˙
83 82 impr KDivRingXBnBaseKX=00×nX=n·˙1˙
84 36 39 83 rspcedvd KDivRingXBnBaseKX=00×nmSX=m·˙1˙
85 34 84 rexlimddv KDivRingXBmSX=m·˙1˙
86 1 prjsprel X˙1˙XB1˙BmSX=m·˙1˙
87 7 9 85 86 syl21anbrc KDivRingXBX˙1˙