Metamath Proof Explorer


Theorem 4sqlem17

Description: Lemma for 4sq . (Contributed by Mario Carneiro, 16-Jul-2014) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses 4sq.1 S=n|xyzwn=x2+y2+z2+w2
4sq.2 φN
4sq.3 φP=2 N+1
4sq.4 φP
4sq.5 φ02 NS
4sq.6 T=i|iPS
4sq.7 M=supT<
4sq.m φM2
4sq.a φA
4sq.b φB
4sq.c φC
4sq.d φD
4sq.e E=A+M2modMM2
4sq.f F=B+M2modMM2
4sq.g G=C+M2modMM2
4sq.h H=D+M2modMM2
4sq.r R=E2+F2+G2+H2M
4sq.p φMP=A2+B2+C2+D2
Assertion 4sqlem17 ¬φ

Proof

Step Hyp Ref Expression
1 4sq.1 S=n|xyzwn=x2+y2+z2+w2
2 4sq.2 φN
3 4sq.3 φP=2 N+1
4 4sq.4 φP
5 4sq.5 φ02 NS
6 4sq.6 T=i|iPS
7 4sq.7 M=supT<
8 4sq.m φM2
9 4sq.a φA
10 4sq.b φB
11 4sq.c φC
12 4sq.d φD
13 4sq.e E=A+M2modMM2
14 4sq.f F=B+M2modMM2
15 4sq.g G=C+M2modMM2
16 4sq.h H=D+M2modMM2
17 4sq.r R=E2+F2+G2+H2M
18 4sq.p φMP=A2+B2+C2+D2
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4sqlem16 φRMR=0R=MM2MP
20 19 simpld φRM
21 6 ssrab3 T
22 nnuz =1
23 21 22 sseqtri T1
24 1 2 3 4 5 6 7 4sqlem13 φTM<P
25 24 simpld φT
26 infssuzcl T1TsupT<T
27 23 25 26 sylancr φsupT<T
28 7 27 eqeltrid φMT
29 21 28 sselid φM
30 29 nnred φM
31 24 simprd φM<P
32 30 31 ltned φMP
33 29 nncnd φM
34 33 sqvald φM2= M M
35 34 breq1d φM2MP M MMP
36 29 nnzd φM
37 prmz PP
38 4 37 syl φP
39 29 nnne0d φM0
40 dvdscmulr MPMM0 M MMPMP
41 36 38 36 39 40 syl112anc φ M MMPMP
42 dvdsprm M2PMPM=P
43 8 4 42 syl2anc φMPM=P
44 35 41 43 3bitrd φM2MPM=P
45 44 necon3bbid φ¬M2MPMP
46 32 45 mpbird φ¬M2MP
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4sqlem14 φR0
48 elnn0 R0RR=0
49 47 48 sylib φRR=0
50 49 ord φ¬RR=0
51 orc R=0R=0R=M
52 19 simprd φR=0R=MM2MP
53 51 52 syl5 φR=0M2MP
54 50 53 syld φ¬RM2MP
55 46 54 mt3d φR
56 gzreim ABA+iBi
57 9 10 56 syl2anc φA+iBi
58 gzcn A+iBiA+iB
59 57 58 syl φA+iB
60 59 absvalsq2d φA+iB2=A+iB2+A+iB2
61 9 zred φA
62 10 zred φB
63 61 62 crred φA+iB=A
64 63 oveq1d φA+iB2=A2
65 61 62 crimd φA+iB=B
66 65 oveq1d φA+iB2=B2
67 64 66 oveq12d φA+iB2+A+iB2=A2+B2
68 60 67 eqtrd φA+iB2=A2+B2
69 gzreim CDC+iDi
70 11 12 69 syl2anc φC+iDi
71 gzcn C+iDiC+iD
72 70 71 syl φC+iD
73 72 absvalsq2d φC+iD2=C+iD2+C+iD2
74 11 zred φC
75 12 zred φD
76 74 75 crred φC+iD=C
77 76 oveq1d φC+iD2=C2
78 74 75 crimd φC+iD=D
79 78 oveq1d φC+iD2=D2
80 77 79 oveq12d φC+iD2+C+iD2=C2+D2
81 73 80 eqtrd φC+iD2=C2+D2
82 68 81 oveq12d φA+iB2+C+iD2=A2+B2+C2+D2
83 18 82 eqtr4d φMP=A+iB2+C+iD2
84 83 oveq1d φMPM=A+iB2+C+iD2M
85 prmnn PP
86 4 85 syl φP
87 86 nncnd φP
88 87 33 39 divcan3d φMPM=P
89 84 88 eqtr3d φA+iB2+C+iD2M=P
90 9 29 13 4sqlem5 φEAEM
91 90 simpld φE
92 10 29 14 4sqlem5 φFBFM
93 92 simpld φF
94 gzreim EFE+iFi
95 91 93 94 syl2anc φE+iFi
96 gzcn E+iFiE+iF
97 95 96 syl φE+iF
98 97 absvalsq2d φE+iF2=E+iF2+E+iF2
99 91 zred φE
100 93 zred φF
101 99 100 crred φE+iF=E
102 101 oveq1d φE+iF2=E2
103 99 100 crimd φE+iF=F
104 103 oveq1d φE+iF2=F2
105 102 104 oveq12d φE+iF2+E+iF2=E2+F2
106 98 105 eqtrd φE+iF2=E2+F2
107 11 29 15 4sqlem5 φGCGM
108 107 simpld φG
109 12 29 16 4sqlem5 φHDHM
110 109 simpld φH
111 gzreim GHG+iHi
112 108 110 111 syl2anc φG+iHi
113 gzcn G+iHiG+iH
114 112 113 syl φG+iH
115 114 absvalsq2d φG+iH2=G+iH2+G+iH2
116 108 zred φG
117 110 zred φH
118 116 117 crred φG+iH=G
119 118 oveq1d φG+iH2=G2
120 116 117 crimd φG+iH=H
121 120 oveq1d φG+iH2=H2
122 119 121 oveq12d φG+iH2+G+iH2=G2+H2
123 115 122 eqtrd φG+iH2=G2+H2
124 106 123 oveq12d φE+iF2+G+iH2=E2+F2+G2+H2
125 124 oveq1d φE+iF2+G+iH2M=E2+F2+G2+H2M
126 125 17 eqtr4di φE+iF2+G+iH2M=R
127 89 126 oveq12d φA+iB2+C+iD2ME+iF2+G+iH2M=PR
128 55 nncnd φR
129 87 128 mulcomd φPR=RP
130 127 129 eqtrd φA+iB2+C+iD2ME+iF2+G+iH2M=RP
131 eqid A+iB2+C+iD2=A+iB2+C+iD2
132 eqid E+iF2+G+iH2=E+iF2+G+iH2
133 9 zcnd φA
134 ax-icn i
135 10 zcnd φB
136 mulcl iBiB
137 134 135 136 sylancr φiB
138 91 zcnd φE
139 93 zcnd φF
140 mulcl iFiF
141 134 139 140 sylancr φiF
142 133 137 138 141 addsub4d φA+iB-E+iF=AE+iB-iF
143 134 a1i φi
144 143 135 139 subdid φiBF=iBiF
145 144 oveq2d φA-E+iBF=AE+iB-iF
146 142 145 eqtr4d φA+iB-E+iF=A-E+iBF
147 146 oveq1d φA+iB-E+iFM=A-E+iBFM
148 133 138 subcld φAE
149 135 139 subcld φBF
150 mulcl iBFiBF
151 134 149 150 sylancr φiBF
152 148 151 33 39 divdird φA-E+iBFM=AEM+iBFM
153 143 149 33 39 divassd φiBFM=iBFM
154 153 oveq2d φAEM+iBFM=AEM+iBFM
155 147 152 154 3eqtrd φA+iB-E+iFM=AEM+iBFM
156 90 simprd φAEM
157 92 simprd φBFM
158 gzreim AEMBFMAEM+iBFMi
159 156 157 158 syl2anc φAEM+iBFMi
160 155 159 eqeltrd φA+iB-E+iFMi
161 11 zcnd φC
162 12 zcnd φD
163 mulcl iDiD
164 134 162 163 sylancr φiD
165 108 zcnd φG
166 110 zcnd φH
167 mulcl iHiH
168 134 166 167 sylancr φiH
169 161 164 165 168 addsub4d φC+iD-G+iH=CG+iD-iH
170 143 162 166 subdid φiDH=iDiH
171 170 oveq2d φC-G+iDH=CG+iD-iH
172 169 171 eqtr4d φC+iD-G+iH=C-G+iDH
173 172 oveq1d φC+iD-G+iHM=C-G+iDHM
174 161 165 subcld φCG
175 162 166 subcld φDH
176 mulcl iDHiDH
177 134 175 176 sylancr φiDH
178 174 177 33 39 divdird φC-G+iDHM=CGM+iDHM
179 143 175 33 39 divassd φiDHM=iDHM
180 179 oveq2d φCGM+iDHM=CGM+iDHM
181 173 178 180 3eqtrd φC+iD-G+iHM=CGM+iDHM
182 107 simprd φCGM
183 109 simprd φDHM
184 gzreim CGMDHMCGM+iDHMi
185 182 183 184 syl2anc φCGM+iDHMi
186 181 185 eqeltrd φC+iD-G+iHMi
187 86 nnnn0d φP0
188 89 187 eqeltrd φA+iB2+C+iD2M0
189 1 57 70 95 112 131 132 29 160 186 188 mul4sqlem φA+iB2+C+iD2ME+iF2+G+iH2MS
190 130 189 eqeltrrd φRPS
191 oveq1 i=RiP=RP
192 191 eleq1d i=RiPSRPS
193 192 6 elrab2 RTRRPS
194 55 190 193 sylanbrc φRT
195 infssuzle T1RTsupT<R
196 23 194 195 sylancr φsupT<R
197 7 196 eqbrtrid φMR
198 55 nnred φR
199 198 30 letri3d φR=MRMMR
200 20 197 199 mpbir2and φR=M
201 200 olcd φR=0R=M
202 201 52 mpd φM2MP
203 202 46 pm2.65i ¬φ