Metamath Proof Explorer


Theorem abvcxp

Description: Raising an absolute value to a power less than one yields another absolute value. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abvcxp.a A=AbsValR
abvcxp.b B=BaseR
abvcxp.f G=xBFxS
Assertion abvcxp FAS01GA

Proof

Step Hyp Ref Expression
1 abvcxp.a A=AbsValR
2 abvcxp.b B=BaseR
3 abvcxp.f G=xBFxS
4 1 a1i FAS01A=AbsValR
5 2 a1i FAS01B=BaseR
6 eqidd FAS01+R=+R
7 eqidd FAS01R=R
8 eqidd FAS010R=0R
9 1 abvrcl FARRing
10 9 adantr FAS01RRing
11 1 2 abvcl FAxBFx
12 11 adantlr FAS01xBFx
13 1 2 abvge0 FAxB0Fx
14 13 adantlr FAS01xB0Fx
15 simpr FAS01S01
16 0xr 0*
17 1re 1
18 elioc2 0*1S01S0<SS1
19 16 17 18 mp2an S01S0<SS1
20 15 19 sylib FAS01S0<SS1
21 20 simp1d FAS01S
22 21 adantr FAS01xBS
23 12 14 22 recxpcld FAS01xBFxS
24 23 3 fmptd FAS01G:B
25 eqid 0R=0R
26 2 25 ring0cl RRing0RB
27 10 26 syl FAS010RB
28 fveq2 x=0RFx=F0R
29 28 oveq1d x=0RFxS=F0RS
30 ovex F0RSV
31 29 3 30 fvmpt 0RBG0R=F0RS
32 27 31 syl FAS01G0R=F0RS
33 1 25 abv0 FAF0R=0
34 33 adantr FAS01F0R=0
35 34 oveq1d FAS01F0RS=0S
36 21 recnd FAS01S
37 20 simp2d FAS010<S
38 37 gt0ne0d FAS01S0
39 36 38 0cxpd FAS010S=0
40 35 39 eqtrd FAS01F0RS=0
41 32 40 eqtrd FAS01G0R=0
42 simp1l FAS01yBy0RFA
43 simp2 FAS01yBy0RyB
44 1 2 abvcl FAyBFy
45 42 43 44 syl2anc FAS01yBy0RFy
46 1 2 25 abvgt0 FAyBy0R0<Fy
47 46 3adant1r FAS01yBy0R0<Fy
48 45 47 elrpd FAS01yBy0RFy+
49 21 3ad2ant1 FAS01yBy0RS
50 48 49 rpcxpcld FAS01yBy0RFyS+
51 50 rpgt0d FAS01yBy0R0<FyS
52 fveq2 x=yFx=Fy
53 52 oveq1d x=yFxS=FyS
54 ovex FySV
55 53 3 54 fvmpt yBGy=FyS
56 43 55 syl FAS01yBy0RGy=FyS
57 51 56 breqtrrd FAS01yBy0R0<Gy
58 simp1l FAS01yBy0RzBz0RFA
59 simp2l FAS01yBy0RzBz0RyB
60 simp3l FAS01yBy0RzBz0RzB
61 eqid R=R
62 1 2 61 abvmul FAyBzBFyRz=FyFz
63 58 59 60 62 syl3anc FAS01yBy0RzBz0RFyRz=FyFz
64 63 oveq1d FAS01yBy0RzBz0RFyRzS=FyFzS
65 58 59 44 syl2anc FAS01yBy0RzBz0RFy
66 1 2 abvge0 FAyB0Fy
67 58 59 66 syl2anc FAS01yBy0RzBz0R0Fy
68 1 2 abvcl FAzBFz
69 58 60 68 syl2anc FAS01yBy0RzBz0RFz
70 1 2 abvge0 FAzB0Fz
71 58 60 70 syl2anc FAS01yBy0RzBz0R0Fz
72 36 3ad2ant1 FAS01yBy0RzBz0RS
73 65 67 69 71 72 mulcxpd FAS01yBy0RzBz0RFyFzS=FySFzS
74 64 73 eqtrd FAS01yBy0RzBz0RFyRzS=FySFzS
75 10 3ad2ant1 FAS01yBy0RzBz0RRRing
76 2 61 ringcl RRingyBzByRzB
77 75 59 60 76 syl3anc FAS01yBy0RzBz0RyRzB
78 fveq2 x=yRzFx=FyRz
79 78 oveq1d x=yRzFxS=FyRzS
80 ovex FyRzSV
81 79 3 80 fvmpt yRzBGyRz=FyRzS
82 77 81 syl FAS01yBy0RzBz0RGyRz=FyRzS
83 59 55 syl FAS01yBy0RzBz0RGy=FyS
84 fveq2 x=zFx=Fz
85 84 oveq1d x=zFxS=FzS
86 ovex FzSV
87 85 3 86 fvmpt zBGz=FzS
88 60 87 syl FAS01yBy0RzBz0RGz=FzS
89 83 88 oveq12d FAS01yBy0RzBz0RGyGz=FySFzS
90 74 82 89 3eqtr4d FAS01yBy0RzBz0RGyRz=GyGz
91 ringgrp RRingRGrp
92 75 91 syl FAS01yBy0RzBz0RRGrp
93 eqid +R=+R
94 2 93 grpcl RGrpyBzBy+RzB
95 92 59 60 94 syl3anc FAS01yBy0RzBz0Ry+RzB
96 1 2 abvcl FAy+RzBFy+Rz
97 58 95 96 syl2anc FAS01yBy0RzBz0RFy+Rz
98 1 2 abvge0 FAy+RzB0Fy+Rz
99 58 95 98 syl2anc FAS01yBy0RzBz0R0Fy+Rz
100 20 3ad2ant1 FAS01yBy0RzBz0RS0<SS1
101 100 simp1d FAS01yBy0RzBz0RS
102 97 99 101 recxpcld FAS01yBy0RzBz0RFy+RzS
103 65 69 readdcld FAS01yBy0RzBz0RFy+Fz
104 65 69 67 71 addge0d FAS01yBy0RzBz0R0Fy+Fz
105 103 104 101 recxpcld FAS01yBy0RzBz0RFy+FzS
106 65 67 101 recxpcld FAS01yBy0RzBz0RFyS
107 69 71 101 recxpcld FAS01yBy0RzBz0RFzS
108 106 107 readdcld FAS01yBy0RzBz0RFyS+FzS
109 1 2 93 abvtri FAyBzBFy+RzFy+Fz
110 58 59 60 109 syl3anc FAS01yBy0RzBz0RFy+RzFy+Fz
111 100 simp2d FAS01yBy0RzBz0R0<S
112 101 111 elrpd FAS01yBy0RzBz0RS+
113 97 99 103 104 112 cxple2d FAS01yBy0RzBz0RFy+RzFy+FzFy+RzSFy+FzS
114 110 113 mpbid FAS01yBy0RzBz0RFy+RzSFy+FzS
115 100 simp3d FAS01yBy0RzBz0RS1
116 65 67 69 71 112 115 cxpaddle FAS01yBy0RzBz0RFy+FzSFyS+FzS
117 102 105 108 114 116 letrd FAS01yBy0RzBz0RFy+RzSFyS+FzS
118 fveq2 x=y+RzFx=Fy+Rz
119 118 oveq1d x=y+RzFxS=Fy+RzS
120 ovex Fy+RzSV
121 119 3 120 fvmpt y+RzBGy+Rz=Fy+RzS
122 95 121 syl FAS01yBy0RzBz0RGy+Rz=Fy+RzS
123 83 88 oveq12d FAS01yBy0RzBz0RGy+Gz=FyS+FzS
124 117 122 123 3brtr4d FAS01yBy0RzBz0RGy+RzGy+Gz
125 4 5 6 7 8 10 24 41 57 90 124 isabvd FAS01GA