Metamath Proof Explorer


Theorem atancj

Description: The arctangent function distributes under conjugation. (The condition that Re ( A ) =/= 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -u 1 and 1 , though.) (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atancj AA0AdomarctanarctanA=arctanA

Proof

Step Hyp Ref Expression
1 simpl AA0A
2 simpr AA0A0
3 fveq2 A=iA=i
4 ax-icn i
5 4 renegi i=i
6 rei i=0
7 6 negeqi i=0
8 neg0 0=0
9 5 7 8 3eqtri i=0
10 3 9 eqtrdi A=iA=0
11 10 necon3i A0Ai
12 2 11 syl AA0Ai
13 fveq2 A=iA=i
14 13 6 eqtrdi A=iA=0
15 14 necon3i A0Ai
16 2 15 syl AA0Ai
17 atandm AdomarctanAAiAi
18 1 12 16 17 syl3anbrc AA0Adomarctan
19 halfcl ii2
20 4 19 ax-mp i2
21 ax-1cn 1
22 mulcl iAiA
23 4 1 22 sylancr AA0iA
24 subcl 1iA1iA
25 21 23 24 sylancr AA01iA
26 atandm2 AdomarctanA1iA01+iA0
27 18 26 sylib AA0A1iA01+iA0
28 27 simp2d AA01iA0
29 25 28 logcld AA0log1iA
30 addcl 1iA1+iA
31 21 23 30 sylancr AA01+iA
32 27 simp3d AA01+iA0
33 31 32 logcld AA0log1+iA
34 29 33 subcld AA0log1iAlog1+iA
35 cjmul i2log1iAlog1+iAi2log1iAlog1+iA=i2log1iAlog1+iA
36 20 34 35 sylancr AA0i2log1iAlog1+iA=i2log1iAlog1+iA
37 2ne0 20
38 2cn 2
39 4 38 cjdivi 20i2=i2
40 37 39 ax-mp i2=i2
41 divneg i220i2=i2
42 4 38 37 41 mp3an i2=i2
43 cji i=i
44 2re 2
45 cjre 22=2
46 44 45 ax-mp 2=2
47 43 46 oveq12i i2=i2
48 42 47 eqtr4i i2=i2
49 40 48 eqtr4i i2=i2
50 49 oveq1i i2log1iAlog1+iA=i2log1iAlog1+iA
51 34 cjcld AA0log1iAlog1+iA
52 mulneg12 i2log1iAlog1+iAi2log1iAlog1+iA=i2log1iAlog1+iA
53 20 51 52 sylancr AA0i2log1iAlog1+iA=i2log1iAlog1+iA
54 50 53 eqtrid AA0i2log1iAlog1+iA=i2log1iAlog1+iA
55 cjsub log1iAlog1+iAlog1iAlog1+iA=log1iAlog1+iA
56 29 33 55 syl2anc AA0log1iAlog1+iA=log1iAlog1+iA
57 imsub 1iA1iA=1iA
58 21 23 57 sylancr AA01iA=1iA
59 reim AA=iA
60 59 adantr AA0A=iA
61 60 oveq2d AA01A=1iA
62 58 61 eqtr4d AA01iA=1A
63 df-neg A=0A
64 im1 1=0
65 64 oveq1i 1A=0A
66 63 65 eqtr4i A=1A
67 62 66 eqtr4di AA01iA=A
68 recl AA
69 68 adantr AA0A
70 69 recnd AA0A
71 70 2 negne0d AA0A0
72 67 71 eqnetrd AA01iA0
73 logcj 1iA1iA0log1iA=log1iA
74 25 72 73 syl2anc AA0log1iA=log1iA
75 cjsub 1iA1iA=1iA
76 21 23 75 sylancr AA01iA=1iA
77 1re 1
78 cjre 11=1
79 77 78 mp1i AA01=1
80 cjmul iAiA=iA
81 4 1 80 sylancr AA0iA=iA
82 43 oveq1i iA=iA
83 cjcl AA
84 83 adantr AA0A
85 mulneg1 iAiA=iA
86 4 84 85 sylancr AA0iA=iA
87 82 86 eqtrid AA0iA=iA
88 81 87 eqtrd AA0iA=iA
89 79 88 oveq12d AA01iA=1iA
90 mulcl iAiA
91 4 84 90 sylancr AA0iA
92 subneg 1iA1iA=1+iA
93 21 91 92 sylancr AA01iA=1+iA
94 76 89 93 3eqtrd AA01iA=1+iA
95 94 fveq2d AA0log1iA=log1+iA
96 74 95 eqtr3d AA0log1iA=log1+iA
97 imadd 1iA1+iA=1+iA
98 21 23 97 sylancr AA01+iA=1+iA
99 60 oveq2d AA00+A=0+iA
100 64 oveq1i 1+iA=0+iA
101 99 100 eqtr4di AA00+A=1+iA
102 70 addlidd AA00+A=A
103 98 101 102 3eqtr2d AA01+iA=A
104 103 2 eqnetrd AA01+iA0
105 logcj 1+iA1+iA0log1+iA=log1+iA
106 31 104 105 syl2anc AA0log1+iA=log1+iA
107 cjadd 1iA1+iA=1+iA
108 21 23 107 sylancr AA01+iA=1+iA
109 79 88 oveq12d AA01+iA=1+iA
110 negsub 1iA1+iA=1iA
111 21 91 110 sylancr AA01+iA=1iA
112 108 109 111 3eqtrd AA01+iA=1iA
113 112 fveq2d AA0log1+iA=log1iA
114 106 113 eqtr3d AA0log1+iA=log1iA
115 96 114 oveq12d AA0log1iAlog1+iA=log1+iAlog1iA
116 56 115 eqtrd AA0log1iAlog1+iA=log1+iAlog1iA
117 116 negeqd AA0log1iAlog1+iA=log1+iAlog1iA
118 addcl 1iA1+iA
119 21 91 118 sylancr AA01+iA
120 atandmcj AdomarctanAdomarctan
121 18 120 syl AA0Adomarctan
122 atandm2 AdomarctanA1iA01+iA0
123 122 simp3bi Adomarctan1+iA0
124 121 123 syl AA01+iA0
125 119 124 logcld AA0log1+iA
126 subcl 1iA1iA
127 21 91 126 sylancr AA01iA
128 122 simp2bi Adomarctan1iA0
129 121 128 syl AA01iA0
130 127 129 logcld AA0log1iA
131 125 130 negsubdi2d AA0log1+iAlog1iA=log1iAlog1+iA
132 117 131 eqtrd AA0log1iAlog1+iA=log1iAlog1+iA
133 132 oveq2d AA0i2log1iAlog1+iA=i2log1iAlog1+iA
134 36 54 133 3eqtrd AA0i2log1iAlog1+iA=i2log1iAlog1+iA
135 atanval AdomarctanarctanA=i2log1iAlog1+iA
136 18 135 syl AA0arctanA=i2log1iAlog1+iA
137 136 fveq2d AA0arctanA=i2log1iAlog1+iA
138 atanval AdomarctanarctanA=i2log1iAlog1+iA
139 121 138 syl AA0arctanA=i2log1iAlog1+iA
140 134 137 139 3eqtr4d AA0arctanA=arctanA
141 18 140 jca AA0AdomarctanarctanA=arctanA