Metamath Proof Explorer


Theorem bcth3

Description: Baire's Category Theorem, version 3: The intersection of countably many dense open sets is dense. (Contributed by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypothesis bcth.2 J=MetOpenD
Assertion bcth3 DCMetXM:JkclsJMk=XclsJranM=X

Proof

Step Hyp Ref Expression
1 bcth.2 J=MetOpenD
2 cmetmet DCMetXDMetX
3 metxmet DMetXD∞MetX
4 2 3 syl DCMetXD∞MetX
5 1 mopntop D∞MetXJTop
6 5 ad2antrr D∞MetXM:JkJTop
7 ffvelcdm M:JkMkJ
8 elssuni MkJMkJ
9 7 8 syl M:JkMkJ
10 9 adantll D∞MetXM:JkMkJ
11 eqid J=J
12 11 clsval2 JTopMkJclsJMk=JintJJMk
13 6 10 12 syl2anc D∞MetXM:JkclsJMk=JintJJMk
14 1 mopnuni D∞MetXX=J
15 14 ad2antrr D∞MetXM:JkX=J
16 13 15 eqeq12d D∞MetXM:JkclsJMk=XJintJJMk=J
17 difeq2 JintJJMk=JJJintJJMk=JJ
18 difid JJ=
19 17 18 eqtrdi JintJJMk=JJJintJJMk=
20 difss JMkJ
21 11 ntropn JTopJMkJintJJMkJ
22 6 20 21 sylancl D∞MetXM:JkintJJMkJ
23 elssuni intJJMkJintJJMkJ
24 22 23 syl D∞MetXM:JkintJJMkJ
25 dfss4 intJJMkJJJintJJMk=intJJMk
26 24 25 sylib D∞MetXM:JkJJintJJMk=intJJMk
27 id kk
28 elfvdm D∞MetXXdom∞Met
29 28 difexd D∞MetXXMkV
30 29 adantr D∞MetXM:JXMkV
31 fveq2 x=kMx=Mk
32 31 difeq2d x=kXMx=XMk
33 eqid xXMx=xXMx
34 32 33 fvmptg kXMkVxXMxk=XMk
35 27 30 34 syl2anr D∞MetXM:JkxXMxk=XMk
36 15 difeq1d D∞MetXM:JkXMk=JMk
37 35 36 eqtrd D∞MetXM:JkxXMxk=JMk
38 37 fveq2d D∞MetXM:JkintJxXMxk=intJJMk
39 26 38 eqtr4d D∞MetXM:JkJJintJJMk=intJxXMxk
40 39 eqeq1d D∞MetXM:JkJJintJJMk=intJxXMxk=
41 19 40 imbitrid D∞MetXM:JkJintJJMk=JintJxXMxk=
42 16 41 sylbid D∞MetXM:JkclsJMk=XintJxXMxk=
43 42 ralimdva D∞MetXM:JkclsJMk=XkintJxXMxk=
44 4 43 sylan DCMetXM:JkclsJMk=XkintJxXMxk=
45 ffvelcdm M:JxMxJ
46 14 difeq1d D∞MetXXMx=JMx
47 46 adantr D∞MetXMxJXMx=JMx
48 11 opncld JTopMxJJMxClsdJ
49 5 48 sylan D∞MetXMxJJMxClsdJ
50 47 49 eqeltrd D∞MetXMxJXMxClsdJ
51 45 50 sylan2 D∞MetXM:JxXMxClsdJ
52 51 anassrs D∞MetXM:JxXMxClsdJ
53 52 ralrimiva D∞MetXM:JxXMxClsdJ
54 4 53 sylan DCMetXM:JxXMxClsdJ
55 33 fmpt xXMxClsdJxXMx:ClsdJ
56 54 55 sylib DCMetXM:JxXMx:ClsdJ
57 nne ¬intJxXMxkintJxXMxk=
58 57 ralbii k¬intJxXMxkkintJxXMxk=
59 ralnex k¬intJxXMxk¬kintJxXMxk
60 58 59 bitr3i kintJxXMxk=¬kintJxXMxk
61 1 bcth DCMetXxXMx:ClsdJintJranxXMxkintJxXMxk
62 61 3expia DCMetXxXMx:ClsdJintJranxXMxkintJxXMxk
63 62 necon1bd DCMetXxXMx:ClsdJ¬kintJxXMxkintJranxXMx=
64 60 63 biimtrid DCMetXxXMx:ClsdJkintJxXMxk=intJranxXMx=
65 56 64 syldan DCMetXM:JkintJxXMxk=intJranxXMx=
66 difeq2 intJranxXMx=JintJranxXMx=J
67 28 difexd D∞MetXXMxV
68 67 ad2antrr D∞MetXM:JxXMxV
69 68 ralrimiva D∞MetXM:JxXMxV
70 33 fnmpt xXMxVxXMxFn
71 fniunfv xXMxFnkxXMxk=ranxXMx
72 69 70 71 3syl D∞MetXM:JkxXMxk=ranxXMx
73 35 iuneq2dv D∞MetXM:JkxXMxk=kXMk
74 32 cbviunv xXMx=kXMk
75 73 74 eqtr4di D∞MetXM:JkxXMxk=xXMx
76 72 75 eqtr3d D∞MetXM:JranxXMx=xXMx
77 iundif2 xXMx=XxMx
78 76 77 eqtrdi D∞MetXM:JranxXMx=XxMx
79 ffn M:JMFn
80 79 adantl D∞MetXM:JMFn
81 fniinfv MFnxMx=ranM
82 80 81 syl D∞MetXM:JxMx=ranM
83 82 difeq2d D∞MetXM:JXxMx=XranM
84 14 adantr D∞MetXM:JX=J
85 84 difeq1d D∞MetXM:JXranM=JranM
86 78 83 85 3eqtrd D∞MetXM:JranxXMx=JranM
87 86 fveq2d D∞MetXM:JintJranxXMx=intJJranM
88 87 difeq2d D∞MetXM:JJintJranxXMx=JintJJranM
89 5 adantr D∞MetXM:JJTop
90 1nn 1
91 biidd k=1D∞MetXM:JranMJD∞MetXM:JranMJ
92 fnfvelrn MFnkMkranM
93 80 92 sylan D∞MetXM:JkMkranM
94 intss1 MkranMranMMk
95 93 94 syl D∞MetXM:JkranMMk
96 95 10 sstrd D∞MetXM:JkranMJ
97 96 expcom kD∞MetXM:JranMJ
98 91 97 vtoclga 1D∞MetXM:JranMJ
99 90 98 ax-mp D∞MetXM:JranMJ
100 11 clsval2 JTopranMJclsJranM=JintJJranM
101 89 99 100 syl2anc D∞MetXM:JclsJranM=JintJJranM
102 88 101 eqtr4d D∞MetXM:JJintJranxXMx=clsJranM
103 dif0 J=J
104 103 84 eqtr4id D∞MetXM:JJ=X
105 102 104 eqeq12d D∞MetXM:JJintJranxXMx=JclsJranM=X
106 66 105 imbitrid D∞MetXM:JintJranxXMx=clsJranM=X
107 4 106 sylan DCMetXM:JintJranxXMx=clsJranM=X
108 44 65 107 3syld DCMetXM:JkclsJMk=XclsJranM=X
109 108 3impia DCMetXM:JkclsJMk=XclsJranM=X