| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcth.2 |  | 
						
							| 2 |  | cmetmet |  | 
						
							| 3 |  | metxmet |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 | 1 | mopntop |  | 
						
							| 6 | 5 | ad2antrr |  | 
						
							| 7 |  | ffvelcdm |  | 
						
							| 8 |  | elssuni |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 | 9 | adantll |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 | clsval2 |  | 
						
							| 13 | 6 10 12 | syl2anc |  | 
						
							| 14 | 1 | mopnuni |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 | 13 15 | eqeq12d |  | 
						
							| 17 |  | difeq2 |  | 
						
							| 18 |  | difid |  | 
						
							| 19 | 17 18 | eqtrdi |  | 
						
							| 20 |  | difss |  | 
						
							| 21 | 11 | ntropn |  | 
						
							| 22 | 6 20 21 | sylancl |  | 
						
							| 23 |  | elssuni |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 |  | dfss4 |  | 
						
							| 26 | 24 25 | sylib |  | 
						
							| 27 |  | id |  | 
						
							| 28 |  | elfvdm |  | 
						
							| 29 | 28 | difexd |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | fveq2 |  | 
						
							| 32 | 31 | difeq2d |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 32 33 | fvmptg |  | 
						
							| 35 | 27 30 34 | syl2anr |  | 
						
							| 36 | 15 | difeq1d |  | 
						
							| 37 | 35 36 | eqtrd |  | 
						
							| 38 | 37 | fveq2d |  | 
						
							| 39 | 26 38 | eqtr4d |  | 
						
							| 40 | 39 | eqeq1d |  | 
						
							| 41 | 19 40 | imbitrid |  | 
						
							| 42 | 16 41 | sylbid |  | 
						
							| 43 | 42 | ralimdva |  | 
						
							| 44 | 4 43 | sylan |  | 
						
							| 45 |  | ffvelcdm |  | 
						
							| 46 | 14 | difeq1d |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 11 | opncld |  | 
						
							| 49 | 5 48 | sylan |  | 
						
							| 50 | 47 49 | eqeltrd |  | 
						
							| 51 | 45 50 | sylan2 |  | 
						
							| 52 | 51 | anassrs |  | 
						
							| 53 | 52 | ralrimiva |  | 
						
							| 54 | 4 53 | sylan |  | 
						
							| 55 | 33 | fmpt |  | 
						
							| 56 | 54 55 | sylib |  | 
						
							| 57 |  | nne |  | 
						
							| 58 | 57 | ralbii |  | 
						
							| 59 |  | ralnex |  | 
						
							| 60 | 58 59 | bitr3i |  | 
						
							| 61 | 1 | bcth |  | 
						
							| 62 | 61 | 3expia |  | 
						
							| 63 | 62 | necon1bd |  | 
						
							| 64 | 60 63 | biimtrid |  | 
						
							| 65 | 56 64 | syldan |  | 
						
							| 66 |  | difeq2 |  | 
						
							| 67 | 28 | difexd |  | 
						
							| 68 | 67 | ad2antrr |  | 
						
							| 69 | 68 | ralrimiva |  | 
						
							| 70 | 33 | fnmpt |  | 
						
							| 71 |  | fniunfv |  | 
						
							| 72 | 69 70 71 | 3syl |  | 
						
							| 73 | 35 | iuneq2dv |  | 
						
							| 74 | 32 | cbviunv |  | 
						
							| 75 | 73 74 | eqtr4di |  | 
						
							| 76 | 72 75 | eqtr3d |  | 
						
							| 77 |  | iundif2 |  | 
						
							| 78 | 76 77 | eqtrdi |  | 
						
							| 79 |  | ffn |  | 
						
							| 80 | 79 | adantl |  | 
						
							| 81 |  | fniinfv |  | 
						
							| 82 | 80 81 | syl |  | 
						
							| 83 | 82 | difeq2d |  | 
						
							| 84 | 14 | adantr |  | 
						
							| 85 | 84 | difeq1d |  | 
						
							| 86 | 78 83 85 | 3eqtrd |  | 
						
							| 87 | 86 | fveq2d |  | 
						
							| 88 | 87 | difeq2d |  | 
						
							| 89 | 5 | adantr |  | 
						
							| 90 |  | 1nn |  | 
						
							| 91 |  | biidd |  | 
						
							| 92 |  | fnfvelrn |  | 
						
							| 93 | 80 92 | sylan |  | 
						
							| 94 |  | intss1 |  | 
						
							| 95 | 93 94 | syl |  | 
						
							| 96 | 95 10 | sstrd |  | 
						
							| 97 | 96 | expcom |  | 
						
							| 98 | 91 97 | vtoclga |  | 
						
							| 99 | 90 98 | ax-mp |  | 
						
							| 100 | 11 | clsval2 |  | 
						
							| 101 | 89 99 100 | syl2anc |  | 
						
							| 102 | 88 101 | eqtr4d |  | 
						
							| 103 |  | dif0 |  | 
						
							| 104 | 103 84 | eqtr4id |  | 
						
							| 105 | 102 104 | eqeq12d |  | 
						
							| 106 | 66 105 | imbitrid |  | 
						
							| 107 | 4 106 | sylan |  | 
						
							| 108 | 44 65 107 | 3syld |  | 
						
							| 109 | 108 | 3impia |  |