Metamath Proof Explorer


Theorem bfplem2

Description: Lemma for bfp . Using the point found in bfplem1 , we show that this convergent point is a fixed point of F . Since for any positive x , the sequence G is in B ( x / 2 , P ) for all k e. ( ZZ>=j ) (where P = ( ( ~>tJ )G ) ), we have D ( G ( j + 1 ) , F ( P ) ) <_ D ( G ( j ) , P ) < x / 2 and D ( G ( j + 1 ) , P ) < x / 2 , so F ( P ) is in every neighborhood of P and P is a fixed point of F . (Contributed by Jeff Madsen, 5-Jun-2014)

Ref Expression
Hypotheses bfp.2 φ D CMet X
bfp.3 φ X
bfp.4 φ K +
bfp.5 φ K < 1
bfp.6 φ F : X X
bfp.7 φ x X y X F x D F y K x D y
bfp.8 J = MetOpen D
bfp.9 φ A X
bfp.10 G = seq 1 F 1 st × A
Assertion bfplem2 φ z X F z = z

Proof

Step Hyp Ref Expression
1 bfp.2 φ D CMet X
2 bfp.3 φ X
3 bfp.4 φ K +
4 bfp.5 φ K < 1
5 bfp.6 φ F : X X
6 bfp.7 φ x X y X F x D F y K x D y
7 bfp.8 J = MetOpen D
8 bfp.9 φ A X
9 bfp.10 G = seq 1 F 1 st × A
10 cmetmet D CMet X D Met X
11 1 10 syl φ D Met X
12 metxmet D Met X D ∞Met X
13 7 mopntopon D ∞Met X J TopOn X
14 11 12 13 3syl φ J TopOn X
15 1 2 3 4 5 6 7 8 9 bfplem1 φ G t J t J G
16 lmcl J TopOn X G t J t J G t J G X
17 14 15 16 syl2anc φ t J G X
18 11 adantr φ x + D Met X
19 18 12 syl φ x + D ∞Met X
20 nnuz = 1
21 1zzd φ x + 1
22 eqidd φ x + k G k = G k
23 15 adantr φ x + G t J t J G
24 rphalfcl x + x 2 +
25 24 adantl φ x + x 2 +
26 7 19 20 21 22 23 25 lmmcvg φ x + j k j G k X G k D t J G < x 2
27 simpr G k X G k D t J G < x 2 G k D t J G < x 2
28 27 ralimi k j G k X G k D t J G < x 2 k j G k D t J G < x 2
29 nnz j j
30 29 adantl φ x + j j
31 uzid j j j
32 fveq2 k = j G k = G j
33 32 oveq1d k = j G k D t J G = G j D t J G
34 33 breq1d k = j G k D t J G < x 2 G j D t J G < x 2
35 34 rspcv j j k j G k D t J G < x 2 G j D t J G < x 2
36 30 31 35 3syl φ x + j k j G k D t J G < x 2 G j D t J G < x 2
37 30 31 syl φ x + j j j
38 peano2uz j j j + 1 j
39 fveq2 k = j + 1 G k = G j + 1
40 39 oveq1d k = j + 1 G k D t J G = G j + 1 D t J G
41 40 breq1d k = j + 1 G k D t J G < x 2 G j + 1 D t J G < x 2
42 41 rspcv j + 1 j k j G k D t J G < x 2 G j + 1 D t J G < x 2
43 37 38 42 3syl φ x + j k j G k D t J G < x 2 G j + 1 D t J G < x 2
44 1zzd φ 1
45 20 9 44 8 5 algrp1 φ j G j + 1 = F G j
46 45 adantlr φ x + j G j + 1 = F G j
47 46 oveq1d φ x + j G j + 1 D t J G = F G j D t J G
48 47 breq1d φ x + j G j + 1 D t J G < x 2 F G j D t J G < x 2
49 43 48 sylibd φ x + j k j G k D t J G < x 2 F G j D t J G < x 2
50 36 49 jcad φ x + j k j G k D t J G < x 2 G j D t J G < x 2 F G j D t J G < x 2
51 11 ad2antrr φ x + j D Met X
52 20 9 44 8 5 algrf φ G : X
53 52 adantr φ x + G : X
54 53 ffvelrnda φ x + j G j X
55 17 ad2antrr φ x + j t J G X
56 metcl D Met X G j X t J G X G j D t J G
57 51 54 55 56 syl3anc φ x + j G j D t J G
58 5 ad2antrr φ x + j F : X X
59 58 54 ffvelrnd φ x + j F G j X
60 metcl D Met X F G j X t J G X F G j D t J G
61 51 59 55 60 syl3anc φ x + j F G j D t J G
62 rpre x + x
63 62 ad2antlr φ x + j x
64 lt2halves G j D t J G F G j D t J G x G j D t J G < x 2 F G j D t J G < x 2 G j D t J G + F G j D t J G < x
65 57 61 63 64 syl3anc φ x + j G j D t J G < x 2 F G j D t J G < x 2 G j D t J G + F G j D t J G < x
66 5 17 ffvelrnd φ F t J G X
67 metcl D Met X F t J G X t J G X F t J G D t J G
68 11 66 17 67 syl3anc φ F t J G D t J G
69 68 ad2antrr φ x + j F t J G D t J G
70 58 55 ffvelrnd φ x + j F t J G X
71 metcl D Met X F G j X F t J G X F G j D F t J G
72 51 59 70 71 syl3anc φ x + j F G j D F t J G
73 72 61 readdcld φ x + j F G j D F t J G + F G j D t J G
74 57 61 readdcld φ x + j G j D t J G + F G j D t J G
75 mettri2 D Met X F G j X F t J G X t J G X F t J G D t J G F G j D F t J G + F G j D t J G
76 51 59 70 55 75 syl13anc φ x + j F t J G D t J G F G j D F t J G + F G j D t J G
77 3 rpred φ K
78 77 ad2antrr φ x + j K
79 78 57 remulcld φ x + j K G j D t J G
80 54 55 jca φ x + j G j X t J G X
81 6 ralrimivva φ x X y X F x D F y K x D y
82 81 ad2antrr φ x + j x X y X F x D F y K x D y
83 fveq2 x = G j F x = F G j
84 83 oveq1d x = G j F x D F y = F G j D F y
85 oveq1 x = G j x D y = G j D y
86 85 oveq2d x = G j K x D y = K G j D y
87 84 86 breq12d x = G j F x D F y K x D y F G j D F y K G j D y
88 fveq2 y = t J G F y = F t J G
89 88 oveq2d y = t J G F G j D F y = F G j D F t J G
90 oveq2 y = t J G G j D y = G j D t J G
91 90 oveq2d y = t J G K G j D y = K G j D t J G
92 89 91 breq12d y = t J G F G j D F y K G j D y F G j D F t J G K G j D t J G
93 87 92 rspc2v G j X t J G X x X y X F x D F y K x D y F G j D F t J G K G j D t J G
94 80 82 93 sylc φ x + j F G j D F t J G K G j D t J G
95 1red φ x + j 1
96 metge0 D Met X G j X t J G X 0 G j D t J G
97 51 54 55 96 syl3anc φ x + j 0 G j D t J G
98 1re 1
99 ltle K 1 K < 1 K 1
100 77 98 99 sylancl φ K < 1 K 1
101 4 100 mpd φ K 1
102 101 ad2antrr φ x + j K 1
103 78 95 57 97 102 lemul1ad φ x + j K G j D t J G 1 G j D t J G
104 57 recnd φ x + j G j D t J G
105 104 mulid2d φ x + j 1 G j D t J G = G j D t J G
106 103 105 breqtrd φ x + j K G j D t J G G j D t J G
107 72 79 57 94 106 letrd φ x + j F G j D F t J G G j D t J G
108 72 57 61 107 leadd1dd φ x + j F G j D F t J G + F G j D t J G G j D t J G + F G j D t J G
109 69 73 74 76 108 letrd φ x + j F t J G D t J G G j D t J G + F G j D t J G
110 lelttr F t J G D t J G G j D t J G + F G j D t J G x F t J G D t J G G j D t J G + F G j D t J G G j D t J G + F G j D t J G < x F t J G D t J G < x
111 69 74 63 110 syl3anc φ x + j F t J G D t J G G j D t J G + F G j D t J G G j D t J G + F G j D t J G < x F t J G D t J G < x
112 109 111 mpand φ x + j G j D t J G + F G j D t J G < x F t J G D t J G < x
113 50 65 112 3syld φ x + j k j G k D t J G < x 2 F t J G D t J G < x
114 28 113 syl5 φ x + j k j G k X G k D t J G < x 2 F t J G D t J G < x
115 114 rexlimdva φ x + j k j G k X G k D t J G < x 2 F t J G D t J G < x
116 26 115 mpd φ x + F t J G D t J G < x
117 ltle F t J G D t J G x F t J G D t J G < x F t J G D t J G x
118 68 62 117 syl2an φ x + F t J G D t J G < x F t J G D t J G x
119 116 118 mpd φ x + F t J G D t J G x
120 62 adantl φ x + x
121 120 recnd φ x + x
122 121 addid2d φ x + 0 + x = x
123 119 122 breqtrrd φ x + F t J G D t J G 0 + x
124 123 ralrimiva φ x + F t J G D t J G 0 + x
125 0re 0
126 alrple F t J G D t J G 0 F t J G D t J G 0 x + F t J G D t J G 0 + x
127 68 125 126 sylancl φ F t J G D t J G 0 x + F t J G D t J G 0 + x
128 124 127 mpbird φ F t J G D t J G 0
129 metge0 D Met X F t J G X t J G X 0 F t J G D t J G
130 11 66 17 129 syl3anc φ 0 F t J G D t J G
131 letri3 F t J G D t J G 0 F t J G D t J G = 0 F t J G D t J G 0 0 F t J G D t J G
132 68 125 131 sylancl φ F t J G D t J G = 0 F t J G D t J G 0 0 F t J G D t J G
133 128 130 132 mpbir2and φ F t J G D t J G = 0
134 meteq0 D Met X F t J G X t J G X F t J G D t J G = 0 F t J G = t J G
135 11 66 17 134 syl3anc φ F t J G D t J G = 0 F t J G = t J G
136 133 135 mpbid φ F t J G = t J G
137 fveq2 z = t J G F z = F t J G
138 id z = t J G z = t J G
139 137 138 eqeq12d z = t J G F z = z F t J G = t J G
140 139 rspcev t J G X F t J G = t J G z X F z = z
141 17 136 140 syl2anc φ z X F z = z