Metamath Proof Explorer


Theorem bgoldbtbndlem3

Description: Lemma 3 for bgoldbtbnd . (Contributed by AV, 1-Aug-2020)

Ref Expression
Hypotheses bgoldbtbnd.m φM11
bgoldbtbnd.n φN11
bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
bgoldbtbnd.d φD3
bgoldbtbnd.f φFRePartD
bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
bgoldbtbnd.0 φF0=7
bgoldbtbnd.1 φF1=13
bgoldbtbnd.l φM<FD
bgoldbtbnd.r φFD
bgoldbtbndlem3.s S=XFI
Assertion bgoldbtbndlem3 φXOddI1..^DXFIFI+14<SSEvenS<N4<S

Proof

Step Hyp Ref Expression
1 bgoldbtbnd.m φM11
2 bgoldbtbnd.n φN11
3 bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
4 bgoldbtbnd.d φD3
5 bgoldbtbnd.f φFRePartD
6 bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
7 bgoldbtbnd.0 φF0=7
8 bgoldbtbnd.1 φF1=13
9 bgoldbtbnd.l φM<FD
10 bgoldbtbnd.r φFD
11 bgoldbtbndlem3.s S=XFI
12 fzo0ss1 1..^D0..^D
13 12 sseli I1..^DI0..^D
14 fveq2 i=IFi=FI
15 14 eleq1d i=IFi2FI2
16 fvoveq1 i=IFi+1=FI+1
17 16 14 oveq12d i=IFi+1Fi=FI+1FI
18 17 breq1d i=IFi+1Fi<N4FI+1FI<N4
19 17 breq2d i=I4<Fi+1Fi4<FI+1FI
20 15 18 19 3anbi123d i=IFi2Fi+1Fi<N44<Fi+1FiFI2FI+1FI<N44<FI+1FI
21 20 rspcv I0..^Di0..^DFi2Fi+1Fi<N44<Fi+1FiFI2FI+1FI<N44<FI+1FI
22 13 6 21 syl2imc φI1..^DFI2FI+1FI<N44<FI+1FI
23 22 a1d φXOddI1..^DFI2FI+1FI<N44<FI+1FI
24 23 3imp φXOddI1..^DFI2FI+1FI<N44<FI+1FI
25 simp2 φXOddI1..^DXOdd
26 oddprmALTV FI2FIOdd
27 26 3ad2ant1 FI2FI+1FI<N44<FI+1FIFIOdd
28 25 27 anim12i φXOddI1..^DFI2FI+1FI<N44<FI+1FIXOddFIOdd
29 28 adantr φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SXOddFIOdd
30 omoeALTV XOddFIOddXFIEven
31 29 30 syl φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SXFIEven
32 11 31 eqeltrid φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SSEven
33 eldifi FI2FI
34 prmz FIFI
35 34 zred FIFI
36 fzofzp1 I1..^DI+11D
37 elfzo2 I1..^DI1DI<D
38 1zzd I1DI<D1
39 simp2 I1DI<DD
40 eluz2 I11I1I
41 zre 11
42 zre II
43 zre DD
44 leltletr 1ID1II<D1D
45 41 42 43 44 syl3an 1ID1II<D1D
46 45 exp5o 1ID1II<D1D
47 46 com34 1I1IDI<D1D
48 47 3imp 1I1IDI<D1D
49 40 48 sylbi I1DI<D1D
50 49 3imp I1DI<D1D
51 eluz2 D11D1D
52 38 39 50 51 syl3anbrc I1DI<DD1
53 37 52 sylbi I1..^DD1
54 fzisfzounsn D11D=1..^DD
55 53 54 syl I1..^D1D=1..^DD
56 55 eleq2d I1..^DI+11DI+11..^DD
57 elun I+11..^DDI+11..^DI+1D
58 56 57 bitrdi I1..^DI+11DI+11..^DI+1D
59 eluzge3nn D3D
60 4 59 syl φD
61 60 ad2antrl I1..^DI+11..^DφXOddD
62 5 ad2antrl I1..^DI+11..^DφXOddFRePartD
63 simplr I1..^DI+11..^DφXOddI+11..^D
64 61 62 63 iccpartipre I1..^DI+11..^DφXOddFI+1
65 64 exp31 I1..^DI+11..^DφXOddFI+1
66 elsni I+1DI+1=D
67 10 ad2antrl I+1=DφXOddFD
68 fveq2 I+1=DFI+1=FD
69 68 eleq1d I+1=DFI+1FD
70 69 adantr I+1=DφXOddFI+1FD
71 67 70 mpbird I+1=DφXOddFI+1
72 71 ex I+1=DφXOddFI+1
73 66 72 syl I+1DφXOddFI+1
74 73 a1i I1..^DI+1DφXOddFI+1
75 65 74 jaod I1..^DI+11..^DI+1DφXOddFI+1
76 58 75 sylbid I1..^DI+11DφXOddFI+1
77 36 76 mpd I1..^DφXOddFI+1
78 77 com12 φXOddI1..^DFI+1
79 78 3impia φXOddI1..^DFI+1
80 eluzelre N11N
81 2 80 syl φN
82 oddz XOddX
83 82 zred XOddX
84 rexr FI+1FI+1*
85 rexr FIFI*
86 84 85 anim12ci FI+1FIFI*FI+1*
87 86 adantl NXFI+1FIFI*FI+1*
88 elico1 FI*FI+1*XFIFI+1X*FIXX<FI+1
89 87 88 syl NXFI+1FIXFIFI+1X*FIXX<FI+1
90 simpllr NXFI+1FIX<FI+1X
91 simplrl NXFI+1FIX<FI+1FI+1
92 simplrr NXFI+1FIX<FI+1FI
93 simpr NXFI+1FIX<FI+1X<FI+1
94 90 91 92 93 ltsub1dd NXFI+1FIX<FI+1XFI<FI+1FI
95 simplr NXFI+1FIX
96 simprr NXFI+1FIFI
97 95 96 resubcld NXFI+1FIXFI
98 97 adantr NXFI+1FIX<FI+1XFI
99 91 92 resubcld NXFI+1FIX<FI+1FI+1FI
100 simplll NXFI+1FIX<FI+1N
101 4re 4
102 101 a1i NXFI+1FIX<FI+14
103 100 102 resubcld NXFI+1FIX<FI+1N4
104 lttr XFIFI+1FIN4XFI<FI+1FIFI+1FI<N4XFI<N4
105 98 99 103 104 syl3anc NXFI+1FIX<FI+1XFI<FI+1FIFI+1FI<N4XFI<N4
106 94 105 mpand NXFI+1FIX<FI+1FI+1FI<N4XFI<N4
107 106 impr NXFI+1FIX<FI+1FI+1FI<N4XFI<N4
108 4pos 0<4
109 101 a1i NX4
110 simpl NXN
111 109 110 ltsubposd NX0<4N4<N
112 108 111 mpbii NXN4<N
113 112 adantr NXFI+1FIN4<N
114 113 adantr NXFI+1FIX<FI+1FI+1FI<N4N4<N
115 simpll NXFI+1FIN
116 101 a1i NXFI+1FI4
117 115 116 resubcld NXFI+1FIN4
118 lttr XFIN4NXFI<N4N4<NXFI<N
119 97 117 115 118 syl3anc NXFI+1FIXFI<N4N4<NXFI<N
120 119 adantr NXFI+1FIX<FI+1FI+1FI<N4XFI<N4N4<NXFI<N
121 107 114 120 mp2and NXFI+1FIX<FI+1FI+1FI<N4XFI<N
122 121 exp32 NXFI+1FIX<FI+1FI+1FI<N4XFI<N
123 122 com12 X<FI+1NXFI+1FIFI+1FI<N4XFI<N
124 123 3ad2ant3 X*FIXX<FI+1NXFI+1FIFI+1FI<N4XFI<N
125 124 com12 NXFI+1FIX*FIXX<FI+1FI+1FI<N4XFI<N
126 89 125 sylbid NXFI+1FIXFIFI+1FI+1FI<N4XFI<N
127 126 com23 NXFI+1FIFI+1FI<N4XFIFI+1XFI<N
128 127 exp32 NXFI+1FIFI+1FI<N4XFIFI+1XFI<N
129 128 com34 NXFI+1FI+1FI<N4FIXFIFI+1XFI<N
130 81 83 129 syl2an φXOddFI+1FI+1FI<N4FIXFIFI+1XFI<N
131 130 3adant3 φXOddI1..^DFI+1FI+1FI<N4FIXFIFI+1XFI<N
132 79 131 mpd φXOddI1..^DFI+1FI<N4FIXFIFI+1XFI<N
133 132 com13 FIFI+1FI<N4φXOddI1..^DXFIFI+1XFI<N
134 33 35 133 3syl FI2FI+1FI<N4φXOddI1..^DXFIFI+1XFI<N
135 134 imp FI2FI+1FI<N4φXOddI1..^DXFIFI+1XFI<N
136 135 3adant3 FI2FI+1FI<N44<FI+1FIφXOddI1..^DXFIFI+1XFI<N
137 136 impcom φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+1XFI<N
138 137 imp φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+1XFI<N
139 138 adantrr φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SXFI<N
140 11 139 eqbrtrid φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SS<N
141 simprr φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<S4<S
142 32 140 141 3jca φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SSEvenS<N4<S
143 142 ex φXOddI1..^DFI2FI+1FI<N44<FI+1FIXFIFI+14<SSEvenS<N4<S
144 24 143 mpdan φXOddI1..^DXFIFI+14<SSEvenS<N4<S