Step |
Hyp |
Ref |
Expression |
1 |
|
bgoldbtbnd.m |
|
2 |
|
bgoldbtbnd.n |
|
3 |
|
bgoldbtbnd.b |
|
4 |
|
bgoldbtbnd.d |
|
5 |
|
bgoldbtbnd.f |
|
6 |
|
bgoldbtbnd.i |
|
7 |
|
bgoldbtbnd.0 |
|
8 |
|
bgoldbtbnd.1 |
|
9 |
|
bgoldbtbnd.l |
|
10 |
|
bgoldbtbnd.r |
|
11 |
|
bgoldbtbndlem3.s |
|
12 |
|
fzo0ss1 |
|
13 |
12
|
sseli |
|
14 |
|
fveq2 |
|
15 |
14
|
eleq1d |
|
16 |
|
fvoveq1 |
|
17 |
16 14
|
oveq12d |
|
18 |
17
|
breq1d |
|
19 |
17
|
breq2d |
|
20 |
15 18 19
|
3anbi123d |
|
21 |
20
|
rspcv |
|
22 |
13 6 21
|
syl2imc |
|
23 |
22
|
a1d |
|
24 |
23
|
3imp |
|
25 |
|
simp2 |
|
26 |
|
oddprmALTV |
|
27 |
26
|
3ad2ant1 |
|
28 |
25 27
|
anim12i |
|
29 |
28
|
adantr |
|
30 |
|
omoeALTV |
|
31 |
29 30
|
syl |
|
32 |
11 31
|
eqeltrid |
|
33 |
|
eldifi |
|
34 |
|
prmz |
|
35 |
34
|
zred |
|
36 |
|
fzofzp1 |
|
37 |
|
elfzo2 |
|
38 |
|
1zzd |
|
39 |
|
simp2 |
|
40 |
|
eluz2 |
|
41 |
|
zre |
|
42 |
|
zre |
|
43 |
|
zre |
|
44 |
|
leltletr |
|
45 |
41 42 43 44
|
syl3an |
|
46 |
45
|
exp5o |
|
47 |
46
|
com34 |
|
48 |
47
|
3imp |
|
49 |
40 48
|
sylbi |
|
50 |
49
|
3imp |
|
51 |
|
eluz2 |
|
52 |
38 39 50 51
|
syl3anbrc |
|
53 |
37 52
|
sylbi |
|
54 |
|
fzisfzounsn |
|
55 |
53 54
|
syl |
|
56 |
55
|
eleq2d |
|
57 |
|
elun |
|
58 |
56 57
|
bitrdi |
|
59 |
|
eluzge3nn |
|
60 |
4 59
|
syl |
|
61 |
60
|
ad2antrl |
|
62 |
5
|
ad2antrl |
|
63 |
|
simplr |
|
64 |
61 62 63
|
iccpartipre |
|
65 |
64
|
exp31 |
|
66 |
|
elsni |
|
67 |
10
|
ad2antrl |
|
68 |
|
fveq2 |
|
69 |
68
|
eleq1d |
|
70 |
69
|
adantr |
|
71 |
67 70
|
mpbird |
|
72 |
71
|
ex |
|
73 |
66 72
|
syl |
|
74 |
73
|
a1i |
|
75 |
65 74
|
jaod |
|
76 |
58 75
|
sylbid |
|
77 |
36 76
|
mpd |
|
78 |
77
|
com12 |
|
79 |
78
|
3impia |
|
80 |
|
eluzelre |
|
81 |
2 80
|
syl |
|
82 |
|
oddz |
|
83 |
82
|
zred |
|
84 |
|
rexr |
|
85 |
|
rexr |
|
86 |
84 85
|
anim12ci |
|
87 |
86
|
adantl |
|
88 |
|
elico1 |
|
89 |
87 88
|
syl |
|
90 |
|
simpllr |
|
91 |
|
simplrl |
|
92 |
|
simplrr |
|
93 |
|
simpr |
|
94 |
90 91 92 93
|
ltsub1dd |
|
95 |
|
simplr |
|
96 |
|
simprr |
|
97 |
95 96
|
resubcld |
|
98 |
97
|
adantr |
|
99 |
91 92
|
resubcld |
|
100 |
|
simplll |
|
101 |
|
4re |
|
102 |
101
|
a1i |
|
103 |
100 102
|
resubcld |
|
104 |
|
lttr |
|
105 |
98 99 103 104
|
syl3anc |
|
106 |
94 105
|
mpand |
|
107 |
106
|
impr |
|
108 |
|
4pos |
|
109 |
101
|
a1i |
|
110 |
|
simpl |
|
111 |
109 110
|
ltsubposd |
|
112 |
108 111
|
mpbii |
|
113 |
112
|
adantr |
|
114 |
113
|
adantr |
|
115 |
|
simpll |
|
116 |
101
|
a1i |
|
117 |
115 116
|
resubcld |
|
118 |
|
lttr |
|
119 |
97 117 115 118
|
syl3anc |
|
120 |
119
|
adantr |
|
121 |
107 114 120
|
mp2and |
|
122 |
121
|
exp32 |
|
123 |
122
|
com12 |
|
124 |
123
|
3ad2ant3 |
|
125 |
124
|
com12 |
|
126 |
89 125
|
sylbid |
|
127 |
126
|
com23 |
|
128 |
127
|
exp32 |
|
129 |
128
|
com34 |
|
130 |
81 83 129
|
syl2an |
|
131 |
130
|
3adant3 |
|
132 |
79 131
|
mpd |
|
133 |
132
|
com13 |
|
134 |
33 35 133
|
3syl |
|
135 |
134
|
imp |
|
136 |
135
|
3adant3 |
|
137 |
136
|
impcom |
|
138 |
137
|
imp |
|
139 |
138
|
adantrr |
|
140 |
11 139
|
eqbrtrid |
|
141 |
|
simprr |
|
142 |
32 140 141
|
3jca |
|
143 |
142
|
ex |
|
144 |
24 143
|
mpdan |
|