Metamath Proof Explorer


Theorem bgoldbtbndlem4

Description: Lemma 4 for bgoldbtbnd . (Contributed by AV, 1-Aug-2020)

Ref Expression
Hypotheses bgoldbtbnd.m φM11
bgoldbtbnd.n φN11
bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
bgoldbtbnd.d φD3
bgoldbtbnd.f φFRePartD
bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
bgoldbtbnd.0 φF0=7
bgoldbtbnd.1 φF1=13
bgoldbtbnd.l φM<FD
bgoldbtbnd.r φFD
Assertion bgoldbtbndlem4 φI1..^DXOddXFIFI+1XFI4pqrpOddqOddrOddX=p+q+r

Proof

Step Hyp Ref Expression
1 bgoldbtbnd.m φM11
2 bgoldbtbnd.n φN11
3 bgoldbtbnd.b φnEven4<nn<NnGoldbachEven
4 bgoldbtbnd.d φD3
5 bgoldbtbnd.f φFRePartD
6 bgoldbtbnd.i φi0..^DFi2Fi+1Fi<N44<Fi+1Fi
7 bgoldbtbnd.0 φF0=7
8 bgoldbtbnd.1 φF1=13
9 bgoldbtbnd.l φM<FD
10 bgoldbtbnd.r φFD
11 simpll φI1..^DXOddφ
12 simpr φI1..^DXOddXOdd
13 simplr φI1..^DXOddI1..^D
14 eqid XFI1=XFI1
15 1 2 3 4 5 6 7 8 9 14 bgoldbtbndlem2 φXOddI1..^DXFIFI+1XFI4XFI1EvenXFI1<N4<XFI1
16 11 12 13 15 syl3anc φI1..^DXOddXFIFI+1XFI4XFI1EvenXFI1<N4<XFI1
17 breq2 n=m4<n4<m
18 breq1 n=mn<Nm<N
19 17 18 anbi12d n=m4<nn<N4<mm<N
20 eleq1 n=mnGoldbachEvenmGoldbachEven
21 19 20 imbi12d n=m4<nn<NnGoldbachEven4<mm<NmGoldbachEven
22 21 cbvralvw nEven4<nn<NnGoldbachEvenmEven4<mm<NmGoldbachEven
23 breq2 m=XFI14<m4<XFI1
24 breq1 m=XFI1m<NXFI1<N
25 23 24 anbi12d m=XFI14<mm<N4<XFI1XFI1<N
26 eleq1 m=XFI1mGoldbachEvenXFI1GoldbachEven
27 25 26 imbi12d m=XFI14<mm<NmGoldbachEven4<XFI1XFI1<NXFI1GoldbachEven
28 27 rspcv XFI1EvenmEven4<mm<NmGoldbachEven4<XFI1XFI1<NXFI1GoldbachEven
29 22 28 biimtrid XFI1EvennEven4<nn<NnGoldbachEven4<XFI1XFI1<NXFI1GoldbachEven
30 id 4<XFI1XFI1<NXFI1GoldbachEven4<XFI1XFI1<NXFI1GoldbachEven
31 isgbe XFI1GoldbachEvenXFI1EvenpqpOddqOddXFI1=p+q
32 simp1 Fi2Fi+1Fi<N44<Fi+1FiFi2
33 32 ralimi i0..^DFi2Fi+1Fi<N44<Fi+1Fii0..^DFi2
34 elfzo1 I1..^DIDI<D
35 nnm1nn0 II10
36 35 3ad2ant1 IDI<DI10
37 34 36 sylbi I1..^DI10
38 37 a1i D3I1..^DI10
39 eluzge3nn D3D
40 39 a1d D3I1..^DD
41 elfzo2 I1..^DI1DI<D
42 eluzelre I1I
43 42 adantr I1DI
44 43 ltm1d I1DI1<I
45 1red I1D1
46 43 45 resubcld I1DI1
47 zre DD
48 47 adantl I1DD
49 lttr I1IDI1<II<DI1<D
50 46 43 48 49 syl3anc I1DI1<II<DI1<D
51 44 50 mpand I1DI<DI1<D
52 51 3impia I1DI<DI1<D
53 41 52 sylbi I1..^DI1<D
54 53 a1i D3I1..^DI1<D
55 38 40 54 3jcad D3I1..^DI10DI1<D
56 4 55 syl φI1..^DI10DI1<D
57 56 imp φI1..^DI10DI1<D
58 elfzo0 I10..^DI10DI1<D
59 57 58 sylibr φI1..^DI10..^D
60 fveq2 i=I1Fi=FI1
61 60 eleq1d i=I1Fi2FI12
62 61 rspcv I10..^Di0..^DFi2FI12
63 59 62 syl φI1..^Di0..^DFi2FI12
64 eldifi FI12FI1
65 63 64 syl6 φI1..^Di0..^DFi2FI1
66 65 expcom I1..^Dφi0..^DFi2FI1
67 66 com13 i0..^DFi2φI1..^DFI1
68 33 67 syl i0..^DFi2Fi+1Fi<N44<Fi+1FiφI1..^DFI1
69 6 68 mpcom φI1..^DFI1
70 69 adantl XFI1EvenφI1..^DFI1
71 70 imp XFI1EvenφI1..^DFI1
72 71 ad2antrr XFI1EvenφI1..^DXOddpFI1
73 72 ad2antrr XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qFI1
74 eleq1 r=FI1rOddFI1Odd
75 74 3anbi3d r=FI1pOddqOddrOddpOddqOddFI1Odd
76 oveq2 r=FI1p+q+r=p+q+FI1
77 76 eqeq2d r=FI1X=p+q+rX=p+q+FI1
78 75 77 anbi12d r=FI1pOddqOddrOddX=p+q+rpOddqOddFI1OddX=p+q+FI1
79 78 adantl XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qr=FI1pOddqOddrOddX=p+q+rpOddqOddFI1OddX=p+q+FI1
80 oddprmALTV FI12FI1Odd
81 63 80 syl6 φI1..^Di0..^DFi2FI1Odd
82 81 expcom I1..^Dφi0..^DFi2FI1Odd
83 82 com13 i0..^DFi2φI1..^DFI1Odd
84 33 83 syl i0..^DFi2Fi+1Fi<N44<Fi+1FiφI1..^DFI1Odd
85 6 84 mpcom φI1..^DFI1Odd
86 85 adantl XFI1EvenφI1..^DFI1Odd
87 86 imp XFI1EvenφI1..^DFI1Odd
88 87 ad3antrrr XFI1EvenφI1..^DXOddpqFI1Odd
89 3simpa pOddqOddXFI1=p+qpOddqOdd
90 88 89 anim12ci XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qpOddqOddFI1Odd
91 df-3an pOddqOddFI1OddpOddqOddFI1Odd
92 90 91 sylibr XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qpOddqOddFI1Odd
93 oddz XOddX
94 93 zcnd XOddX
95 94 adantl XFI1EvenφI1..^DXOddX
96 95 ad2antrr XFI1EvenφI1..^DXOddpqX
97 96 adantl pOddqOddXFI1EvenφI1..^DXOddpqX
98 prmz FI1FI1
99 98 zcnd FI1FI1
100 64 99 syl FI12FI1
101 63 100 syl6 φI1..^Di0..^DFi2FI1
102 101 expcom I1..^Dφi0..^DFi2FI1
103 102 com13 i0..^DFi2φI1..^DFI1
104 33 103 syl i0..^DFi2Fi+1Fi<N44<Fi+1FiφI1..^DFI1
105 6 104 mpcom φI1..^DFI1
106 105 adantl XFI1EvenφI1..^DFI1
107 106 imp XFI1EvenφI1..^DFI1
108 107 ad3antrrr XFI1EvenφI1..^DXOddpqFI1
109 108 adantl pOddqOddXFI1EvenφI1..^DXOddpqFI1
110 97 109 npcand pOddqOddXFI1EvenφI1..^DXOddpqX-FI1+FI1=X
111 oveq1 XFI1=p+qX-FI1+FI1=p+q+FI1
112 110 111 sylan9req pOddqOddXFI1EvenφI1..^DXOddpqXFI1=p+qX=p+q+FI1
113 112 exp31 pOddqOddXFI1EvenφI1..^DXOddpqXFI1=p+qX=p+q+FI1
114 113 com23 pOddqOddXFI1=p+qXFI1EvenφI1..^DXOddpqX=p+q+FI1
115 114 3impia pOddqOddXFI1=p+qXFI1EvenφI1..^DXOddpqX=p+q+FI1
116 115 impcom XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qX=p+q+FI1
117 92 116 jca XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qpOddqOddFI1OddX=p+q+FI1
118 73 79 117 rspcedvd XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qrpOddqOddrOddX=p+q+r
119 118 ex XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qrpOddqOddrOddX=p+q+r
120 119 reximdva XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qqrpOddqOddrOddX=p+q+r
121 120 reximdva XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qpqrpOddqOddrOddX=p+q+r
122 121 exp41 XFI1EvenφI1..^DXOddpqpOddqOddXFI1=p+qpqrpOddqOddrOddX=p+q+r
123 122 com25 XFI1EvenpqpOddqOddXFI1=p+qI1..^DXOddφpqrpOddqOddrOddX=p+q+r
124 123 imp XFI1EvenpqpOddqOddXFI1=p+qI1..^DXOddφpqrpOddqOddrOddX=p+q+r
125 31 124 sylbi XFI1GoldbachEvenI1..^DXOddφpqrpOddqOddrOddX=p+q+r
126 125 a1d XFI1GoldbachEvenXFI1EvenI1..^DXOddφpqrpOddqOddrOddX=p+q+r
127 30 126 syl6com 4<XFI1XFI1<N4<XFI1XFI1<NXFI1GoldbachEvenXFI1EvenI1..^DXOddφpqrpOddqOddrOddX=p+q+r
128 127 ancoms XFI1<N4<XFI14<XFI1XFI1<NXFI1GoldbachEvenXFI1EvenI1..^DXOddφpqrpOddqOddrOddX=p+q+r
129 128 com13 XFI1Even4<XFI1XFI1<NXFI1GoldbachEvenXFI1<N4<XFI1I1..^DXOddφpqrpOddqOddrOddX=p+q+r
130 29 129 syld XFI1EvennEven4<nn<NnGoldbachEvenXFI1<N4<XFI1I1..^DXOddφpqrpOddqOddrOddX=p+q+r
131 130 com23 XFI1EvenXFI1<N4<XFI1nEven4<nn<NnGoldbachEvenI1..^DXOddφpqrpOddqOddrOddX=p+q+r
132 131 3impib XFI1EvenXFI1<N4<XFI1nEven4<nn<NnGoldbachEvenI1..^DXOddφpqrpOddqOddrOddX=p+q+r
133 132 com15 φnEven4<nn<NnGoldbachEvenI1..^DXOddXFI1EvenXFI1<N4<XFI1pqrpOddqOddrOddX=p+q+r
134 3 133 mpd φI1..^DXOddXFI1EvenXFI1<N4<XFI1pqrpOddqOddrOddX=p+q+r
135 134 imp31 φI1..^DXOddXFI1EvenXFI1<N4<XFI1pqrpOddqOddrOddX=p+q+r
136 16 135 syld φI1..^DXOddXFIFI+1XFI4pqrpOddqOddrOddX=p+q+r