Metamath Proof Explorer


Theorem bgoldbtbndlem4

Description: Lemma 4 for bgoldbtbnd . (Contributed by AV, 1-Aug-2020)

Ref Expression
Hypotheses bgoldbtbnd.m φ M 11
bgoldbtbnd.n φ N 11
bgoldbtbnd.b φ n Even 4 < n n < N n GoldbachEven
bgoldbtbnd.d φ D 3
bgoldbtbnd.f φ F RePart D
bgoldbtbnd.i φ i 0 ..^ D F i 2 F i + 1 F i < N 4 4 < F i + 1 F i
bgoldbtbnd.0 φ F 0 = 7
bgoldbtbnd.1 φ F 1 = 13
bgoldbtbnd.l φ M < F D
bgoldbtbnd.r φ F D
Assertion bgoldbtbndlem4 φ I 1 ..^ D X Odd X F I F I + 1 X F I 4 p q r p Odd q Odd r Odd X = p + q + r

Proof

Step Hyp Ref Expression
1 bgoldbtbnd.m φ M 11
2 bgoldbtbnd.n φ N 11
3 bgoldbtbnd.b φ n Even 4 < n n < N n GoldbachEven
4 bgoldbtbnd.d φ D 3
5 bgoldbtbnd.f φ F RePart D
6 bgoldbtbnd.i φ i 0 ..^ D F i 2 F i + 1 F i < N 4 4 < F i + 1 F i
7 bgoldbtbnd.0 φ F 0 = 7
8 bgoldbtbnd.1 φ F 1 = 13
9 bgoldbtbnd.l φ M < F D
10 bgoldbtbnd.r φ F D
11 simpll φ I 1 ..^ D X Odd φ
12 simpr φ I 1 ..^ D X Odd X Odd
13 simplr φ I 1 ..^ D X Odd I 1 ..^ D
14 eqid X F I 1 = X F I 1
15 1 2 3 4 5 6 7 8 9 14 bgoldbtbndlem2 φ X Odd I 1 ..^ D X F I F I + 1 X F I 4 X F I 1 Even X F I 1 < N 4 < X F I 1
16 11 12 13 15 syl3anc φ I 1 ..^ D X Odd X F I F I + 1 X F I 4 X F I 1 Even X F I 1 < N 4 < X F I 1
17 breq2 n = m 4 < n 4 < m
18 breq1 n = m n < N m < N
19 17 18 anbi12d n = m 4 < n n < N 4 < m m < N
20 eleq1 n = m n GoldbachEven m GoldbachEven
21 19 20 imbi12d n = m 4 < n n < N n GoldbachEven 4 < m m < N m GoldbachEven
22 21 cbvralvw n Even 4 < n n < N n GoldbachEven m Even 4 < m m < N m GoldbachEven
23 breq2 m = X F I 1 4 < m 4 < X F I 1
24 breq1 m = X F I 1 m < N X F I 1 < N
25 23 24 anbi12d m = X F I 1 4 < m m < N 4 < X F I 1 X F I 1 < N
26 eleq1 m = X F I 1 m GoldbachEven X F I 1 GoldbachEven
27 25 26 imbi12d m = X F I 1 4 < m m < N m GoldbachEven 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven
28 27 rspcv X F I 1 Even m Even 4 < m m < N m GoldbachEven 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven
29 22 28 syl5bi X F I 1 Even n Even 4 < n n < N n GoldbachEven 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven
30 id 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven
31 isgbe X F I 1 GoldbachEven X F I 1 Even p q p Odd q Odd X F I 1 = p + q
32 simp1 F i 2 F i + 1 F i < N 4 4 < F i + 1 F i F i 2
33 32 ralimi i 0 ..^ D F i 2 F i + 1 F i < N 4 4 < F i + 1 F i i 0 ..^ D F i 2
34 elfzo1 I 1 ..^ D I D I < D
35 nnm1nn0 I I 1 0
36 35 3ad2ant1 I D I < D I 1 0
37 34 36 sylbi I 1 ..^ D I 1 0
38 37 a1i D 3 I 1 ..^ D I 1 0
39 eluzge3nn D 3 D
40 39 a1d D 3 I 1 ..^ D D
41 elfzo2 I 1 ..^ D I 1 D I < D
42 eluzelre I 1 I
43 42 adantr I 1 D I
44 43 ltm1d I 1 D I 1 < I
45 1red I 1 D 1
46 43 45 resubcld I 1 D I 1
47 zre D D
48 47 adantl I 1 D D
49 lttr I 1 I D I 1 < I I < D I 1 < D
50 46 43 48 49 syl3anc I 1 D I 1 < I I < D I 1 < D
51 44 50 mpand I 1 D I < D I 1 < D
52 51 3impia I 1 D I < D I 1 < D
53 41 52 sylbi I 1 ..^ D I 1 < D
54 53 a1i D 3 I 1 ..^ D I 1 < D
55 38 40 54 3jcad D 3 I 1 ..^ D I 1 0 D I 1 < D
56 4 55 syl φ I 1 ..^ D I 1 0 D I 1 < D
57 56 imp φ I 1 ..^ D I 1 0 D I 1 < D
58 elfzo0 I 1 0 ..^ D I 1 0 D I 1 < D
59 57 58 sylibr φ I 1 ..^ D I 1 0 ..^ D
60 fveq2 i = I 1 F i = F I 1
61 60 eleq1d i = I 1 F i 2 F I 1 2
62 61 rspcv I 1 0 ..^ D i 0 ..^ D F i 2 F I 1 2
63 59 62 syl φ I 1 ..^ D i 0 ..^ D F i 2 F I 1 2
64 eldifi F I 1 2 F I 1
65 63 64 syl6 φ I 1 ..^ D i 0 ..^ D F i 2 F I 1
66 65 expcom I 1 ..^ D φ i 0 ..^ D F i 2 F I 1
67 66 com13 i 0 ..^ D F i 2 φ I 1 ..^ D F I 1
68 33 67 syl i 0 ..^ D F i 2 F i + 1 F i < N 4 4 < F i + 1 F i φ I 1 ..^ D F I 1
69 6 68 mpcom φ I 1 ..^ D F I 1
70 69 adantl X F I 1 Even φ I 1 ..^ D F I 1
71 70 imp X F I 1 Even φ I 1 ..^ D F I 1
72 71 ad2antrr X F I 1 Even φ I 1 ..^ D X Odd p F I 1
73 72 ad2antrr X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q F I 1
74 eleq1 r = F I 1 r Odd F I 1 Odd
75 74 3anbi3d r = F I 1 p Odd q Odd r Odd p Odd q Odd F I 1 Odd
76 oveq2 r = F I 1 p + q + r = p + q + F I 1
77 76 eqeq2d r = F I 1 X = p + q + r X = p + q + F I 1
78 75 77 anbi12d r = F I 1 p Odd q Odd r Odd X = p + q + r p Odd q Odd F I 1 Odd X = p + q + F I 1
79 78 adantl X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q r = F I 1 p Odd q Odd r Odd X = p + q + r p Odd q Odd F I 1 Odd X = p + q + F I 1
80 oddprmALTV F I 1 2 F I 1 Odd
81 63 80 syl6 φ I 1 ..^ D i 0 ..^ D F i 2 F I 1 Odd
82 81 expcom I 1 ..^ D φ i 0 ..^ D F i 2 F I 1 Odd
83 82 com13 i 0 ..^ D F i 2 φ I 1 ..^ D F I 1 Odd
84 33 83 syl i 0 ..^ D F i 2 F i + 1 F i < N 4 4 < F i + 1 F i φ I 1 ..^ D F I 1 Odd
85 6 84 mpcom φ I 1 ..^ D F I 1 Odd
86 85 adantl X F I 1 Even φ I 1 ..^ D F I 1 Odd
87 86 imp X F I 1 Even φ I 1 ..^ D F I 1 Odd
88 87 ad3antrrr X F I 1 Even φ I 1 ..^ D X Odd p q F I 1 Odd
89 3simpa p Odd q Odd X F I 1 = p + q p Odd q Odd
90 88 89 anim12ci X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q p Odd q Odd F I 1 Odd
91 df-3an p Odd q Odd F I 1 Odd p Odd q Odd F I 1 Odd
92 90 91 sylibr X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q p Odd q Odd F I 1 Odd
93 oddz X Odd X
94 93 zcnd X Odd X
95 94 adantl X F I 1 Even φ I 1 ..^ D X Odd X
96 95 ad2antrr X F I 1 Even φ I 1 ..^ D X Odd p q X
97 96 adantl p Odd q Odd X F I 1 Even φ I 1 ..^ D X Odd p q X
98 prmz F I 1 F I 1
99 98 zcnd F I 1 F I 1
100 64 99 syl F I 1 2 F I 1
101 63 100 syl6 φ I 1 ..^ D i 0 ..^ D F i 2 F I 1
102 101 expcom I 1 ..^ D φ i 0 ..^ D F i 2 F I 1
103 102 com13 i 0 ..^ D F i 2 φ I 1 ..^ D F I 1
104 33 103 syl i 0 ..^ D F i 2 F i + 1 F i < N 4 4 < F i + 1 F i φ I 1 ..^ D F I 1
105 6 104 mpcom φ I 1 ..^ D F I 1
106 105 adantl X F I 1 Even φ I 1 ..^ D F I 1
107 106 imp X F I 1 Even φ I 1 ..^ D F I 1
108 107 ad3antrrr X F I 1 Even φ I 1 ..^ D X Odd p q F I 1
109 108 adantl p Odd q Odd X F I 1 Even φ I 1 ..^ D X Odd p q F I 1
110 97 109 npcand p Odd q Odd X F I 1 Even φ I 1 ..^ D X Odd p q X - F I 1 + F I 1 = X
111 oveq1 X F I 1 = p + q X - F I 1 + F I 1 = p + q + F I 1
112 110 111 sylan9req p Odd q Odd X F I 1 Even φ I 1 ..^ D X Odd p q X F I 1 = p + q X = p + q + F I 1
113 112 exp31 p Odd q Odd X F I 1 Even φ I 1 ..^ D X Odd p q X F I 1 = p + q X = p + q + F I 1
114 113 com23 p Odd q Odd X F I 1 = p + q X F I 1 Even φ I 1 ..^ D X Odd p q X = p + q + F I 1
115 114 3impia p Odd q Odd X F I 1 = p + q X F I 1 Even φ I 1 ..^ D X Odd p q X = p + q + F I 1
116 115 impcom X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q X = p + q + F I 1
117 92 116 jca X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q p Odd q Odd F I 1 Odd X = p + q + F I 1
118 73 79 117 rspcedvd X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q r p Odd q Odd r Odd X = p + q + r
119 118 ex X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q r p Odd q Odd r Odd X = p + q + r
120 119 reximdva X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q q r p Odd q Odd r Odd X = p + q + r
121 120 reximdva X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q p q r p Odd q Odd r Odd X = p + q + r
122 121 exp41 X F I 1 Even φ I 1 ..^ D X Odd p q p Odd q Odd X F I 1 = p + q p q r p Odd q Odd r Odd X = p + q + r
123 122 com25 X F I 1 Even p q p Odd q Odd X F I 1 = p + q I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
124 123 imp X F I 1 Even p q p Odd q Odd X F I 1 = p + q I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
125 31 124 sylbi X F I 1 GoldbachEven I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
126 125 a1d X F I 1 GoldbachEven X F I 1 Even I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
127 30 126 syl6com 4 < X F I 1 X F I 1 < N 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven X F I 1 Even I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
128 127 ancoms X F I 1 < N 4 < X F I 1 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven X F I 1 Even I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
129 128 com13 X F I 1 Even 4 < X F I 1 X F I 1 < N X F I 1 GoldbachEven X F I 1 < N 4 < X F I 1 I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
130 29 129 syld X F I 1 Even n Even 4 < n n < N n GoldbachEven X F I 1 < N 4 < X F I 1 I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
131 130 com23 X F I 1 Even X F I 1 < N 4 < X F I 1 n Even 4 < n n < N n GoldbachEven I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
132 131 3impib X F I 1 Even X F I 1 < N 4 < X F I 1 n Even 4 < n n < N n GoldbachEven I 1 ..^ D X Odd φ p q r p Odd q Odd r Odd X = p + q + r
133 132 com15 φ n Even 4 < n n < N n GoldbachEven I 1 ..^ D X Odd X F I 1 Even X F I 1 < N 4 < X F I 1 p q r p Odd q Odd r Odd X = p + q + r
134 3 133 mpd φ I 1 ..^ D X Odd X F I 1 Even X F I 1 < N 4 < X F I 1 p q r p Odd q Odd r Odd X = p + q + r
135 134 imp31 φ I 1 ..^ D X Odd X F I 1 Even X F I 1 < N 4 < X F I 1 p q r p Odd q Odd r Odd X = p + q + r
136 16 135 syld φ I 1 ..^ D X Odd X F I F I + 1 X F I 4 p q r p Odd q Odd r Odd X = p + q + r