Step |
Hyp |
Ref |
Expression |
1 |
|
bgoldbtbnd.m |
|
2 |
|
bgoldbtbnd.n |
|
3 |
|
bgoldbtbnd.b |
|
4 |
|
bgoldbtbnd.d |
|
5 |
|
bgoldbtbnd.f |
|
6 |
|
bgoldbtbnd.i |
|
7 |
|
bgoldbtbnd.0 |
|
8 |
|
bgoldbtbnd.1 |
|
9 |
|
bgoldbtbnd.l |
|
10 |
|
bgoldbtbnd.r |
|
11 |
|
simpll |
|
12 |
|
simpr |
|
13 |
|
simplr |
|
14 |
|
eqid |
|
15 |
1 2 3 4 5 6 7 8 9 14
|
bgoldbtbndlem2 |
|
16 |
11 12 13 15
|
syl3anc |
|
17 |
|
breq2 |
|
18 |
|
breq1 |
|
19 |
17 18
|
anbi12d |
|
20 |
|
eleq1 |
|
21 |
19 20
|
imbi12d |
|
22 |
21
|
cbvralvw |
|
23 |
|
breq2 |
|
24 |
|
breq1 |
|
25 |
23 24
|
anbi12d |
|
26 |
|
eleq1 |
|
27 |
25 26
|
imbi12d |
|
28 |
27
|
rspcv |
|
29 |
22 28
|
syl5bi |
|
30 |
|
id |
|
31 |
|
isgbe |
|
32 |
|
simp1 |
|
33 |
32
|
ralimi |
|
34 |
|
elfzo1 |
|
35 |
|
nnm1nn0 |
|
36 |
35
|
3ad2ant1 |
|
37 |
34 36
|
sylbi |
|
38 |
37
|
a1i |
|
39 |
|
eluzge3nn |
|
40 |
39
|
a1d |
|
41 |
|
elfzo2 |
|
42 |
|
eluzelre |
|
43 |
42
|
adantr |
|
44 |
43
|
ltm1d |
|
45 |
|
1red |
|
46 |
43 45
|
resubcld |
|
47 |
|
zre |
|
48 |
47
|
adantl |
|
49 |
|
lttr |
|
50 |
46 43 48 49
|
syl3anc |
|
51 |
44 50
|
mpand |
|
52 |
51
|
3impia |
|
53 |
41 52
|
sylbi |
|
54 |
53
|
a1i |
|
55 |
38 40 54
|
3jcad |
|
56 |
4 55
|
syl |
|
57 |
56
|
imp |
|
58 |
|
elfzo0 |
|
59 |
57 58
|
sylibr |
|
60 |
|
fveq2 |
|
61 |
60
|
eleq1d |
|
62 |
61
|
rspcv |
|
63 |
59 62
|
syl |
|
64 |
|
eldifi |
|
65 |
63 64
|
syl6 |
|
66 |
65
|
expcom |
|
67 |
66
|
com13 |
|
68 |
33 67
|
syl |
|
69 |
6 68
|
mpcom |
|
70 |
69
|
adantl |
|
71 |
70
|
imp |
|
72 |
71
|
ad2antrr |
|
73 |
72
|
ad2antrr |
|
74 |
|
eleq1 |
|
75 |
74
|
3anbi3d |
|
76 |
|
oveq2 |
|
77 |
76
|
eqeq2d |
|
78 |
75 77
|
anbi12d |
|
79 |
78
|
adantl |
|
80 |
|
oddprmALTV |
|
81 |
63 80
|
syl6 |
|
82 |
81
|
expcom |
|
83 |
82
|
com13 |
|
84 |
33 83
|
syl |
|
85 |
6 84
|
mpcom |
|
86 |
85
|
adantl |
|
87 |
86
|
imp |
|
88 |
87
|
ad3antrrr |
|
89 |
|
3simpa |
|
90 |
88 89
|
anim12ci |
|
91 |
|
df-3an |
|
92 |
90 91
|
sylibr |
|
93 |
|
oddz |
|
94 |
93
|
zcnd |
|
95 |
94
|
adantl |
|
96 |
95
|
ad2antrr |
|
97 |
96
|
adantl |
|
98 |
|
prmz |
|
99 |
98
|
zcnd |
|
100 |
64 99
|
syl |
|
101 |
63 100
|
syl6 |
|
102 |
101
|
expcom |
|
103 |
102
|
com13 |
|
104 |
33 103
|
syl |
|
105 |
6 104
|
mpcom |
|
106 |
105
|
adantl |
|
107 |
106
|
imp |
|
108 |
107
|
ad3antrrr |
|
109 |
108
|
adantl |
|
110 |
97 109
|
npcand |
|
111 |
|
oveq1 |
|
112 |
110 111
|
sylan9req |
|
113 |
112
|
exp31 |
|
114 |
113
|
com23 |
|
115 |
114
|
3impia |
|
116 |
115
|
impcom |
|
117 |
92 116
|
jca |
|
118 |
73 79 117
|
rspcedvd |
|
119 |
118
|
ex |
|
120 |
119
|
reximdva |
|
121 |
120
|
reximdva |
|
122 |
121
|
exp41 |
|
123 |
122
|
com25 |
|
124 |
123
|
imp |
|
125 |
31 124
|
sylbi |
|
126 |
125
|
a1d |
|
127 |
30 126
|
syl6com |
|
128 |
127
|
ancoms |
|
129 |
128
|
com13 |
|
130 |
29 129
|
syld |
|
131 |
130
|
com23 |
|
132 |
131
|
3impib |
|
133 |
132
|
com15 |
|
134 |
3 133
|
mpd |
|
135 |
134
|
imp31 |
|
136 |
16 135
|
syld |
|