Metamath Proof Explorer


Theorem blocni

Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (Revised by Mario Carneiro, 10-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses blocni.8 C=IndMetU
blocni.d D=IndMetW
blocni.j J=MetOpenC
blocni.k K=MetOpenD
blocni.4 L=ULnOpW
blocni.5 B=UBLnOpW
blocni.u UNrmCVec
blocni.w WNrmCVec
blocni.l TL
Assertion blocni TJCnKTB

Proof

Step Hyp Ref Expression
1 blocni.8 C=IndMetU
2 blocni.d D=IndMetW
3 blocni.j J=MetOpenC
4 blocni.k K=MetOpenD
5 blocni.4 L=ULnOpW
6 blocni.5 B=UBLnOpW
7 blocni.u UNrmCVec
8 blocni.w WNrmCVec
9 blocni.l TL
10 eqid BaseSetU=BaseSetU
11 eqid 0vecU=0vecU
12 10 11 nvzcl UNrmCVec0vecUBaseSetU
13 7 12 ax-mp 0vecUBaseSetU
14 10 1 imsmet UNrmCVecCMetBaseSetU
15 7 14 ax-mp CMetBaseSetU
16 metxmet CMetBaseSetUC∞MetBaseSetU
17 15 16 ax-mp C∞MetBaseSetU
18 3 mopntopon C∞MetBaseSetUJTopOnBaseSetU
19 17 18 ax-mp JTopOnBaseSetU
20 19 toponunii BaseSetU=J
21 20 cncnpi TJCnK0vecUBaseSetUTJCnPK0vecU
22 13 21 mpan2 TJCnKTJCnPK0vecU
23 1 2 3 4 5 6 7 8 9 10 blocnilem 0vecUBaseSetUTJCnPK0vecUTB
24 13 22 23 sylancr TJCnKTB
25 eleq1 T=U0opWTJCnKU0opWJCnK
26 simprr TBTU0opWxBaseSetUy+y+
27 eqid BaseSetW=BaseSetW
28 eqid UnormOpOLDW=UnormOpOLDW
29 10 27 28 6 nmblore UNrmCVecWNrmCVecTBUnormOpOLDWT
30 7 8 29 mp3an12 TBUnormOpOLDWT
31 eqid U0opW=U0opW
32 28 31 5 nmlnogt0 UNrmCVecWNrmCVecTLTU0opW0<UnormOpOLDWT
33 7 8 9 32 mp3an TU0opW0<UnormOpOLDWT
34 33 biimpi TU0opW0<UnormOpOLDWT
35 30 34 anim12i TBTU0opWUnormOpOLDWT0<UnormOpOLDWT
36 elrp UnormOpOLDWT+UnormOpOLDWT0<UnormOpOLDWT
37 35 36 sylibr TBTU0opWUnormOpOLDWT+
38 37 adantr TBTU0opWxBaseSetUy+UnormOpOLDWT+
39 26 38 rpdivcld TBTU0opWxBaseSetUy+yUnormOpOLDWT+
40 simprl TBTU0opWxBaseSetUy+xBaseSetU
41 metcl CMetBaseSetUxBaseSetUwBaseSetUxCw
42 15 41 mp3an1 xBaseSetUwBaseSetUxCw
43 40 42 sylan TBTU0opWxBaseSetUy+wBaseSetUxCw
44 simplrr TBTU0opWxBaseSetUy+wBaseSetUy+
45 44 rpred TBTU0opWxBaseSetUy+wBaseSetUy
46 35 ad2antrr TBTU0opWxBaseSetUy+wBaseSetUUnormOpOLDWT0<UnormOpOLDWT
47 ltmuldiv2 xCwyUnormOpOLDWT0<UnormOpOLDWTUnormOpOLDWTxCw<yxCw<yUnormOpOLDWT
48 43 45 46 47 syl3anc TBTU0opWxBaseSetUy+wBaseSetUUnormOpOLDWTxCw<yxCw<yUnormOpOLDWT
49 id TBxBaseSetUTBxBaseSetU
50 49 ad2ant2r TBTU0opWxBaseSetUy+TBxBaseSetU
51 10 27 1 2 28 6 7 8 blometi TBxBaseSetUwBaseSetUTxDTwUnormOpOLDWTxCw
52 51 3expa TBxBaseSetUwBaseSetUTxDTwUnormOpOLDWTxCw
53 50 52 sylan TBTU0opWxBaseSetUy+wBaseSetUTxDTwUnormOpOLDWTxCw
54 10 27 5 lnof UNrmCVecWNrmCVecTLT:BaseSetUBaseSetW
55 7 8 9 54 mp3an T:BaseSetUBaseSetW
56 55 ffvelcdmi xBaseSetUTxBaseSetW
57 55 ffvelcdmi wBaseSetUTwBaseSetW
58 27 2 imsmet WNrmCVecDMetBaseSetW
59 8 58 ax-mp DMetBaseSetW
60 metcl DMetBaseSetWTxBaseSetWTwBaseSetWTxDTw
61 59 60 mp3an1 TxBaseSetWTwBaseSetWTxDTw
62 56 57 61 syl2an xBaseSetUwBaseSetUTxDTw
63 40 62 sylan TBTU0opWxBaseSetUy+wBaseSetUTxDTw
64 remulcl UnormOpOLDWTxCwUnormOpOLDWTxCw
65 30 42 64 syl2an TBxBaseSetUwBaseSetUUnormOpOLDWTxCw
66 65 anassrs TBxBaseSetUwBaseSetUUnormOpOLDWTxCw
67 66 adantllr TBTU0opWxBaseSetUwBaseSetUUnormOpOLDWTxCw
68 67 adantlrr TBTU0opWxBaseSetUy+wBaseSetUUnormOpOLDWTxCw
69 lelttr TxDTwUnormOpOLDWTxCwyTxDTwUnormOpOLDWTxCwUnormOpOLDWTxCw<yTxDTw<y
70 63 68 45 69 syl3anc TBTU0opWxBaseSetUy+wBaseSetUTxDTwUnormOpOLDWTxCwUnormOpOLDWTxCw<yTxDTw<y
71 53 70 mpand TBTU0opWxBaseSetUy+wBaseSetUUnormOpOLDWTxCw<yTxDTw<y
72 48 71 sylbird TBTU0opWxBaseSetUy+wBaseSetUxCw<yUnormOpOLDWTTxDTw<y
73 72 ralrimiva TBTU0opWxBaseSetUy+wBaseSetUxCw<yUnormOpOLDWTTxDTw<y
74 breq2 z=yUnormOpOLDWTxCw<zxCw<yUnormOpOLDWT
75 74 rspceaimv yUnormOpOLDWT+wBaseSetUxCw<yUnormOpOLDWTTxDTw<yz+wBaseSetUxCw<zTxDTw<y
76 39 73 75 syl2anc TBTU0opWxBaseSetUy+z+wBaseSetUxCw<zTxDTw<y
77 76 ralrimivva TBTU0opWxBaseSetUy+z+wBaseSetUxCw<zTxDTw<y
78 77 55 jctil TBTU0opWT:BaseSetUBaseSetWxBaseSetUy+z+wBaseSetUxCw<zTxDTw<y
79 metxmet DMetBaseSetWD∞MetBaseSetW
80 59 79 ax-mp D∞MetBaseSetW
81 3 4 metcn C∞MetBaseSetUD∞MetBaseSetWTJCnKT:BaseSetUBaseSetWxBaseSetUy+z+wBaseSetUxCw<zTxDTw<y
82 17 80 81 mp2an TJCnKT:BaseSetUBaseSetWxBaseSetUy+z+wBaseSetUxCw<zTxDTw<y
83 78 82 sylibr TBTU0opWTJCnK
84 eqid 0vecW=0vecW
85 10 84 31 0ofval UNrmCVecWNrmCVecU0opW=BaseSetU×0vecW
86 7 8 85 mp2an U0opW=BaseSetU×0vecW
87 4 mopntopon D∞MetBaseSetWKTopOnBaseSetW
88 80 87 ax-mp KTopOnBaseSetW
89 27 84 nvzcl WNrmCVec0vecWBaseSetW
90 8 89 ax-mp 0vecWBaseSetW
91 cnconst2 JTopOnBaseSetUKTopOnBaseSetW0vecWBaseSetWBaseSetU×0vecWJCnK
92 19 88 90 91 mp3an BaseSetU×0vecWJCnK
93 86 92 eqeltri U0opWJCnK
94 93 a1i TBU0opWJCnK
95 25 83 94 pm2.61ne TBTJCnK
96 24 95 impbii TJCnKTB