Metamath Proof Explorer


Theorem cdj1i

Description: Two ways to express " A and B are completely disjoint subspaces." (1) => (2) in Lemma 5 of Holland p. 1520. (Contributed by NM, 21-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj1.1 AS
cdj1.2 BS
Assertion cdj1i w0<wyAvBnormy+normvwnormy+vx0<xyAzBnormy=1xnormy-z

Proof

Step Hyp Ref Expression
1 cdj1.1 AS
2 cdj1.2 BS
3 gt0ne0 w0<ww0
4 rereccl ww01w
5 3 4 syldan w0<w1w
6 5 adantrr w0<wyAvBnormy+normvwnormy+v1w
7 recgt0 w0<w0<1w
8 7 adantrr w0<wyAvBnormy+normvwnormy+v0<1w
9 1red wyAzBvBnormy+normvwnormy+vnormy=11
10 1re 1
11 neg1cn 1
12 2 sheli zBz
13 hvmulcl 1z-1z
14 11 12 13 sylancr zB-1z
15 normcl -1znorm-1z
16 14 15 syl zBnorm-1z
17 16 adantl wyAzBnorm-1z
18 readdcl 1norm-1z1+norm-1z
19 10 17 18 sylancr wyAzB1+norm-1z
20 19 adantr wyAzBvBnormy+normvwnormy+vnormy=11+norm-1z
21 1 sheli yAy
22 hvsubcl yzy-z
23 21 12 22 syl2an yAzBy-z
24 normcl y-znormy-z
25 23 24 syl yAzBnormy-z
26 remulcl wnormy-zwnormy-z
27 25 26 sylan2 wyAzBwnormy-z
28 27 anassrs wyAzBwnormy-z
29 28 adantr wyAzBvBnormy+normvwnormy+vnormy=1wnormy-z
30 normge0 -1z0norm-1z
31 14 30 syl zB0norm-1z
32 addge01 1norm-1z0norm-1z11+norm-1z
33 10 32 mpan norm-1z0norm-1z11+norm-1z
34 33 biimpa norm-1z0norm-1z11+norm-1z
35 16 31 34 syl2anc zB11+norm-1z
36 35 ad2antlr wyAzBvBnormy+normvwnormy+vnormy=111+norm-1z
37 shmulcl BS1zB-1zB
38 2 11 37 mp3an12 zB-1zB
39 fveq2 v=-1znormv=norm-1z
40 39 oveq2d v=-1znormy+normv=normy+norm-1z
41 oveq2 v=-1zy+v=y+-1z
42 41 fveq2d v=-1znormy+v=normy+-1z
43 42 oveq2d v=-1zwnormy+v=wnormy+-1z
44 40 43 breq12d v=-1znormy+normvwnormy+vnormy+norm-1zwnormy+-1z
45 44 rspcv -1zBvBnormy+normvwnormy+vnormy+norm-1zwnormy+-1z
46 38 45 syl zBvBnormy+normvwnormy+vnormy+norm-1zwnormy+-1z
47 46 imp zBvBnormy+normvwnormy+vnormy+norm-1zwnormy+-1z
48 47 ad2ant2lr wyAzBvBnormy+normvwnormy+vnormy=1normy+norm-1zwnormy+-1z
49 oveq1 1=normy1+norm-1z=normy+norm-1z
50 49 eqcoms normy=11+norm-1z=normy+norm-1z
51 50 ad2antll wyAzBvBnormy+normvwnormy+vnormy=11+norm-1z=normy+norm-1z
52 hvsubval yzy-z=y+-1z
53 21 12 52 syl2an yAzBy-z=y+-1z
54 53 fveq2d yAzBnormy-z=normy+-1z
55 54 oveq2d yAzBwnormy-z=wnormy+-1z
56 55 adantll wyAzBwnormy-z=wnormy+-1z
57 56 adantr wyAzBvBnormy+normvwnormy+vnormy=1wnormy-z=wnormy+-1z
58 48 51 57 3brtr4d wyAzBvBnormy+normvwnormy+vnormy=11+norm-1zwnormy-z
59 9 20 29 36 58 letrd wyAzBvBnormy+normvwnormy+vnormy=11wnormy-z
60 59 ex wyAzBvBnormy+normvwnormy+vnormy=11wnormy-z
61 60 adantllr w0<wyAzBvBnormy+normvwnormy+vnormy=11wnormy-z
62 simplll w0<wyAzBw
63 23 adantll w0<wyAzBy-z
64 63 24 syl w0<wyAzBnormy-z
65 62 64 26 syl2anc w0<wyAzBwnormy-z
66 simpllr w0<wyAzB0<w
67 lediv1 1wnormy-zw0<w1wnormy-z1wwnormy-zw
68 10 67 mp3an1 wnormy-zw0<w1wnormy-z1wwnormy-zw
69 65 62 66 68 syl12anc w0<wyAzB1wnormy-z1wwnormy-zw
70 61 69 sylibd w0<wyAzBvBnormy+normvwnormy+vnormy=11wwnormy-zw
71 70 imp w0<wyAzBvBnormy+normvwnormy+vnormy=11wwnormy-zw
72 25 recnd yAzBnormy-z
73 72 adantll w0<wyAzBnormy-z
74 recn ww
75 74 ad3antrrr w0<wyAzBw
76 3 ad2antrr w0<wyAzBw0
77 73 75 76 divcan3d w0<wyAzBwnormy-zw=normy-z
78 77 adantr w0<wyAzBvBnormy+normvwnormy+vnormy=1wnormy-zw=normy-z
79 71 78 breqtrd w0<wyAzBvBnormy+normvwnormy+vnormy=11wnormy-z
80 79 exp43 w0<wyAzBvBnormy+normvwnormy+vnormy=11wnormy-z
81 80 com23 w0<wyAvBnormy+normvwnormy+vzBnormy=11wnormy-z
82 81 ralrimdv w0<wyAvBnormy+normvwnormy+vzBnormy=11wnormy-z
83 82 ralimdva w0<wyAvBnormy+normvwnormy+vyAzBnormy=11wnormy-z
84 83 impr w0<wyAvBnormy+normvwnormy+vyAzBnormy=11wnormy-z
85 6 8 84 jca32 w0<wyAvBnormy+normvwnormy+v1w0<1wyAzBnormy=11wnormy-z
86 85 ex w0<wyAvBnormy+normvwnormy+v1w0<1wyAzBnormy=11wnormy-z
87 breq2 x=1w0<x0<1w
88 breq1 x=1wxnormy-z1wnormy-z
89 88 imbi2d x=1wnormy=1xnormy-znormy=11wnormy-z
90 89 2ralbidv x=1wyAzBnormy=1xnormy-zyAzBnormy=11wnormy-z
91 87 90 anbi12d x=1w0<xyAzBnormy=1xnormy-z0<1wyAzBnormy=11wnormy-z
92 91 rspcev 1w0<1wyAzBnormy=11wnormy-zx0<xyAzBnormy=1xnormy-z
93 86 92 syl6 w0<wyAvBnormy+normvwnormy+vx0<xyAzBnormy=1xnormy-z
94 93 rexlimiv w0<wyAvBnormy+normvwnormy+vx0<xyAzBnormy=1xnormy-z