Metamath Proof Explorer


Theorem cdlemk4

Description: Part of proof of Lemma K of Crawley p. 118, last line. We use X for their h, since H is already used. (Contributed by NM, 24-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B=BaseK
cdlemk.l ˙=K
cdlemk.j ˙=joinK
cdlemk.a A=AtomsK
cdlemk.h H=LHypK
cdlemk.t T=LTrnKW
cdlemk.r R=trLKW
cdlemk.m ˙=meetK
Assertion cdlemk4 KHLWHFTXTPA¬P˙WFP˙XP˙RXF-1

Proof

Step Hyp Ref Expression
1 cdlemk.b B=BaseK
2 cdlemk.l ˙=K
3 cdlemk.j ˙=joinK
4 cdlemk.a A=AtomsK
5 cdlemk.h H=LHypK
6 cdlemk.t T=LTrnKW
7 cdlemk.r R=trLKW
8 cdlemk.m ˙=meetK
9 simp1l KHLWHFTXTPA¬P˙WKHL
10 simp1 KHLWHFTXTPA¬P˙WKHLWH
11 simp2l KHLWHFTXTPA¬P˙WFT
12 simp3l KHLWHFTXTPA¬P˙WPA
13 2 4 5 6 ltrnat KHLWHFTPAFPA
14 10 11 12 13 syl3anc KHLWHFTXTPA¬P˙WFPA
15 simp2r KHLWHFTXTPA¬P˙WXT
16 2 4 5 6 ltrnat KHLWHXTPAXPA
17 10 15 12 16 syl3anc KHLWHFTXTPA¬P˙WXPA
18 2 3 4 hlatlej1 KHLFPAXPAFP˙FP˙XP
19 9 14 17 18 syl3anc KHLWHFTXTPA¬P˙WFP˙FP˙XP
20 9 hllatd KHLWHFTXTPA¬P˙WKLat
21 1 4 atbase FPAFPB
22 14 21 syl KHLWHFTXTPA¬P˙WFPB
23 1 4 atbase XPAXPB
24 17 23 syl KHLWHFTXTPA¬P˙WXPB
25 1 3 latjcl KLatFPBXPBFP˙XPB
26 20 22 24 25 syl3anc KHLWHFTXTPA¬P˙WFP˙XPB
27 simp1r KHLWHFTXTPA¬P˙WWH
28 1 5 lhpbase WHWB
29 27 28 syl KHLWHFTXTPA¬P˙WWB
30 2 3 4 hlatlej2 KHLFPAXPAXP˙FP˙XP
31 9 14 17 30 syl3anc KHLWHFTXTPA¬P˙WXP˙FP˙XP
32 1 2 3 8 4 atmod3i1 KHLXPAFP˙XPBWBXP˙FP˙XPXP˙FP˙XP˙W=FP˙XP˙XP˙W
33 9 17 26 29 31 32 syl131anc KHLWHFTXTPA¬P˙WXP˙FP˙XP˙W=FP˙XP˙XP˙W
34 5 6 ltrncnv KHLWHFTF-1T
35 10 11 34 syl2anc KHLWHFTXTPA¬P˙WF-1T
36 5 6 ltrnco KHLWHXTF-1TXF-1T
37 10 15 35 36 syl3anc KHLWHFTXTPA¬P˙WXF-1T
38 2 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
39 11 38 syld3an2 KHLWHFTXTPA¬P˙WFPA¬FP˙W
40 2 3 8 4 5 6 7 trlval2 KHLWHXF-1TFPA¬FP˙WRXF-1=FP˙XF-1FP˙W
41 10 37 39 40 syl3anc KHLWHFTXTPA¬P˙WRXF-1=FP˙XF-1FP˙W
42 1 5 6 ltrn1o KHLWHFTF:B1-1 ontoB
43 10 11 42 syl2anc KHLWHFTXTPA¬P˙WF:B1-1 ontoB
44 f1ococnv1 F:B1-1 ontoBF-1F=IB
45 43 44 syl KHLWHFTXTPA¬P˙WF-1F=IB
46 45 coeq2d KHLWHFTXTPA¬P˙WXF-1F=XIB
47 1 5 6 ltrn1o KHLWHXTX:B1-1 ontoB
48 10 15 47 syl2anc KHLWHFTXTPA¬P˙WX:B1-1 ontoB
49 f1of X:B1-1 ontoBX:BB
50 fcoi1 X:BBXIB=X
51 48 49 50 3syl KHLWHFTXTPA¬P˙WXIB=X
52 46 51 eqtr2d KHLWHFTXTPA¬P˙WX=XF-1F
53 coass XF-1F=XF-1F
54 52 53 eqtr4di KHLWHFTXTPA¬P˙WX=XF-1F
55 54 fveq1d KHLWHFTXTPA¬P˙WXP=XF-1FP
56 2 4 5 6 ltrncoval KHLWHXF-1TFTPAXF-1FP=XF-1FP
57 10 37 11 12 56 syl121anc KHLWHFTXTPA¬P˙WXF-1FP=XF-1FP
58 55 57 eqtrd KHLWHFTXTPA¬P˙WXP=XF-1FP
59 58 oveq2d KHLWHFTXTPA¬P˙WFP˙XP=FP˙XF-1FP
60 59 eqcomd KHLWHFTXTPA¬P˙WFP˙XF-1FP=FP˙XP
61 60 oveq1d KHLWHFTXTPA¬P˙WFP˙XF-1FP˙W=FP˙XP˙W
62 41 61 eqtrd KHLWHFTXTPA¬P˙WRXF-1=FP˙XP˙W
63 62 oveq2d KHLWHFTXTPA¬P˙WXP˙RXF-1=XP˙FP˙XP˙W
64 2 4 5 6 ltrnel KHLWHXTPA¬P˙WXPA¬XP˙W
65 15 64 syld3an2 KHLWHFTXTPA¬P˙WXPA¬XP˙W
66 eqid 1.K=1.K
67 2 3 66 4 5 lhpjat2 KHLWHXPA¬XP˙WXP˙W=1.K
68 10 65 67 syl2anc KHLWHFTXTPA¬P˙WXP˙W=1.K
69 68 oveq2d KHLWHFTXTPA¬P˙WFP˙XP˙XP˙W=FP˙XP˙1.K
70 hlol KHLKOL
71 9 70 syl KHLWHFTXTPA¬P˙WKOL
72 1 8 66 olm11 KOLFP˙XPBFP˙XP˙1.K=FP˙XP
73 71 26 72 syl2anc KHLWHFTXTPA¬P˙WFP˙XP˙1.K=FP˙XP
74 69 73 eqtr2d KHLWHFTXTPA¬P˙WFP˙XP=FP˙XP˙XP˙W
75 33 63 74 3eqtr4rd KHLWHFTXTPA¬P˙WFP˙XP=XP˙RXF-1
76 19 75 breqtrd KHLWHFTXTPA¬P˙WFP˙XP˙RXF-1