Metamath Proof Explorer


Theorem chpmat1dlem

Description: Lemma for chpmat1d . (Contributed by AV, 7-Aug-2019)

Ref Expression
Hypotheses chpmat1d.c C=NCharPlyMatR
chpmat1d.p P=Poly1R
chpmat1d.a A=NMatR
chpmat1d.b B=BaseA
chpmat1d.x X=var1R
chpmat1d.z -˙=-P
chpmat1d.s S=algScP
chpmat1dlem.g G=NMatP
chpmat1dlem.x T=NmatToPolyMatR
Assertion chpmat1dlem RRingN=IIVMBIXG1G-GTMI=X-˙SIMI

Proof

Step Hyp Ref Expression
1 chpmat1d.c C=NCharPlyMatR
2 chpmat1d.p P=Poly1R
3 chpmat1d.a A=NMatR
4 chpmat1d.b B=BaseA
5 chpmat1d.x X=var1R
6 chpmat1d.z -˙=-P
7 chpmat1d.s S=algScP
8 chpmat1dlem.g G=NMatP
9 chpmat1dlem.x T=NmatToPolyMatR
10 2 ply1ring RRingPRing
11 10 3ad2ant1 RRingN=IIVMBPRing
12 snfi IFin
13 eleq1 N=INFinIFin
14 12 13 mpbiri N=INFin
15 14 adantr N=IIVNFin
16 10 15 anim12i RRingN=IIVPRingNFin
17 16 3adant3 RRingN=IIVMBPRingNFin
18 17 ancomd RRingN=IIVMBNFinPRing
19 8 matlmod NFinPRingGLMod
20 18 19 syl RRingN=IIVMBGLMod
21 eqid Poly1R=Poly1R
22 eqid BasePoly1R=BasePoly1R
23 5 21 22 vr1cl RRingXBasePoly1R
24 23 3ad2ant1 RRingN=IIVMBXBasePoly1R
25 15 3ad2ant2 RRingN=IIVMBNFin
26 fvex Poly1RV
27 2 oveq2i NMatP=NMatPoly1R
28 8 27 eqtri G=NMatPoly1R
29 28 matsca2 NFinPoly1RVPoly1R=ScalarG
30 25 26 29 sylancl RRingN=IIVMBPoly1R=ScalarG
31 30 eqcomd RRingN=IIVMBScalarG=Poly1R
32 31 fveq2d RRingN=IIVMBBaseScalarG=BasePoly1R
33 24 32 eleqtrrd RRingN=IIVMBXBaseScalarG
34 8 matring NFinPRingGRing
35 18 34 syl RRingN=IIVMBGRing
36 eqid BaseG=BaseG
37 eqid 1G=1G
38 36 37 ringidcl GRing1GBaseG
39 35 38 syl RRingN=IIVMB1GBaseG
40 20 33 39 3jca RRingN=IIVMBGLModXBaseScalarG1GBaseG
41 eqid ScalarG=ScalarG
42 eqid G=G
43 eqid BaseScalarG=BaseScalarG
44 36 41 42 43 lmodvscl GLModXBaseScalarG1GBaseGXG1GBaseG
45 40 44 syl RRingN=IIVMBXG1GBaseG
46 simp1 RRingN=IIVMBRRing
47 simp3 RRingN=IIVMBMB
48 25 46 47 3jca RRingN=IIVMBNFinRRingMB
49 9 3 4 2 8 mat2pmatbas NFinRRingMBTMBaseG
50 48 49 syl RRingN=IIVMBTMBaseG
51 snidg IVII
52 51 adantl N=IIVII
53 eleq2 N=IINII
54 53 adantr N=IIVINII
55 52 54 mpbird N=IIVIN
56 id ININ
57 55 56 jccir N=IIVININ
58 57 3ad2ant2 RRingN=IIVMBININ
59 eqid -G=-G
60 8 36 59 6 matsubgcell PRingXG1GBaseGTMBaseGININIXG1G-GTMI=IXG1GI-˙ITMI
61 11 45 50 58 60 syl121anc RRingN=IIVMBIXG1G-GTMI=IXG1GI-˙ITMI
62 eqid BaseP=BaseP
63 5 2 62 vr1cl RRingXBaseP
64 63 3ad2ant1 RRingN=IIVMBXBaseP
65 eqid P=P
66 8 36 62 42 65 matvscacell PRingXBaseP1GBaseGININIXG1GI=XPI1GI
67 11 64 39 58 66 syl121anc RRingN=IIVMBIXG1GI=XPI1GI
68 eqid 1P=1P
69 eqid 0P=0P
70 55 3ad2ant2 RRingN=IIVMBIN
71 8 68 69 25 11 70 70 37 mat1ov RRingN=IIVMBI1GI=ifI=I1P0P
72 eqidd RRingN=IIVMBI=I
73 72 iftrued RRingN=IIVMBifI=I1P0P=1P
74 71 73 eqtrd RRingN=IIVMBI1GI=1P
75 74 oveq2d RRingN=IIVMBXPI1GI=XP1P
76 62 65 68 ringridm PRingXBasePXP1P=X
77 11 64 76 syl2anc RRingN=IIVMBXP1P=X
78 67 75 77 3eqtrd RRingN=IIVMBIXG1GI=X
79 9 3 4 2 7 mat2pmatvalel NFinRRingMBININITMI=SIMI
80 48 58 79 syl2anc RRingN=IIVMBITMI=SIMI
81 78 80 oveq12d RRingN=IIVMBIXG1GI-˙ITMI=X-˙SIMI
82 61 81 eqtrd RRingN=IIVMBIXG1G-GTMI=X-˙SIMI