| Step | Hyp | Ref | Expression | 
						
							| 1 |  | conjghm.x |  | 
						
							| 2 |  | conjghm.p |  | 
						
							| 3 |  | conjghm.m |  | 
						
							| 4 |  | conjsubg.f |  | 
						
							| 5 |  | conjnmz.1 |  | 
						
							| 6 |  | subgrcl |  | 
						
							| 7 | 6 | ad2antrr |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 5 | ssrab3 |  | 
						
							| 10 |  | simplr |  | 
						
							| 11 | 9 10 | sselid |  | 
						
							| 12 | 1 8 7 11 | grpinvcld |  | 
						
							| 13 | 1 | subgss |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 | 14 | sselda |  | 
						
							| 16 | 1 2 7 12 15 11 | grpassd |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 1 2 17 8 7 11 | grprinvd |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 1 2 7 11 12 15 | grpassd |  | 
						
							| 21 | 1 2 17 7 15 | grplidd |  | 
						
							| 22 | 19 20 21 | 3eqtr3d |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 22 23 | eqeltrd |  | 
						
							| 25 | 1 2 7 12 15 | grpcld |  | 
						
							| 26 | 5 | nmzbi |  | 
						
							| 27 | 10 25 26 | syl2anc |  | 
						
							| 28 | 24 27 | mpbid |  | 
						
							| 29 | 16 28 | eqeltrrd |  | 
						
							| 30 |  | oveq2 |  | 
						
							| 31 | 30 | oveq1d |  | 
						
							| 32 |  | ovex |  | 
						
							| 33 | 31 4 32 | fvmpt |  | 
						
							| 34 | 29 33 | syl |  | 
						
							| 35 | 18 | oveq1d |  | 
						
							| 36 | 1 2 7 15 11 | grpcld |  | 
						
							| 37 | 1 2 7 11 12 36 | grpassd |  | 
						
							| 38 | 1 2 17 7 36 | grplidd |  | 
						
							| 39 | 35 37 38 | 3eqtr3d |  | 
						
							| 40 | 39 | oveq1d |  | 
						
							| 41 | 1 2 3 | grppncan |  | 
						
							| 42 | 7 15 11 41 | syl3anc |  | 
						
							| 43 | 34 40 42 | 3eqtrd |  | 
						
							| 44 |  | ovex |  | 
						
							| 45 | 44 4 | fnmpti |  | 
						
							| 46 |  | fnfvelrn |  | 
						
							| 47 | 45 29 46 | sylancr |  | 
						
							| 48 | 43 47 | eqeltrrd |  | 
						
							| 49 | 48 | ex |  | 
						
							| 50 | 49 | ssrdv |  | 
						
							| 51 | 6 | ad2antrr |  | 
						
							| 52 |  | simplr |  | 
						
							| 53 | 9 52 | sselid |  | 
						
							| 54 | 14 | sselda |  | 
						
							| 55 | 1 2 3 | grpaddsubass |  | 
						
							| 56 | 51 53 54 53 55 | syl13anc |  | 
						
							| 57 | 1 2 3 | grpnpcan |  | 
						
							| 58 | 51 54 53 57 | syl3anc |  | 
						
							| 59 |  | simpr |  | 
						
							| 60 | 58 59 | eqeltrd |  | 
						
							| 61 | 1 3 | grpsubcl |  | 
						
							| 62 | 51 54 53 61 | syl3anc |  | 
						
							| 63 | 5 | nmzbi |  | 
						
							| 64 | 52 62 63 | syl2anc |  | 
						
							| 65 | 60 64 | mpbird |  | 
						
							| 66 | 56 65 | eqeltrd |  | 
						
							| 67 | 66 4 | fmptd |  | 
						
							| 68 | 67 | frnd |  | 
						
							| 69 | 50 68 | eqssd |  |