Metamath Proof Explorer


Theorem conjnmz

Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x X = Base G
conjghm.p + ˙ = + G
conjghm.m - ˙ = - G
conjsubg.f F = x S A + ˙ x - ˙ A
conjnmz.1 N = y X | z X y + ˙ z S z + ˙ y S
Assertion conjnmz S SubGrp G A N S = ran F

Proof

Step Hyp Ref Expression
1 conjghm.x X = Base G
2 conjghm.p + ˙ = + G
3 conjghm.m - ˙ = - G
4 conjsubg.f F = x S A + ˙ x - ˙ A
5 conjnmz.1 N = y X | z X y + ˙ z S z + ˙ y S
6 subgrcl S SubGrp G G Grp
7 6 ad2antrr S SubGrp G A N w S G Grp
8 5 ssrab3 N X
9 simplr S SubGrp G A N w S A N
10 8 9 sseldi S SubGrp G A N w S A X
11 eqid inv g G = inv g G
12 1 11 grpinvcl G Grp A X inv g G A X
13 7 10 12 syl2anc S SubGrp G A N w S inv g G A X
14 1 subgss S SubGrp G S X
15 14 adantr S SubGrp G A N S X
16 15 sselda S SubGrp G A N w S w X
17 1 2 grpass G Grp inv g G A X w X A X inv g G A + ˙ w + ˙ A = inv g G A + ˙ w + ˙ A
18 7 13 16 10 17 syl13anc S SubGrp G A N w S inv g G A + ˙ w + ˙ A = inv g G A + ˙ w + ˙ A
19 eqid 0 G = 0 G
20 1 2 19 11 grprinv G Grp A X A + ˙ inv g G A = 0 G
21 7 10 20 syl2anc S SubGrp G A N w S A + ˙ inv g G A = 0 G
22 21 oveq1d S SubGrp G A N w S A + ˙ inv g G A + ˙ w = 0 G + ˙ w
23 1 2 grpass G Grp A X inv g G A X w X A + ˙ inv g G A + ˙ w = A + ˙ inv g G A + ˙ w
24 7 10 13 16 23 syl13anc S SubGrp G A N w S A + ˙ inv g G A + ˙ w = A + ˙ inv g G A + ˙ w
25 1 2 19 grplid G Grp w X 0 G + ˙ w = w
26 7 16 25 syl2anc S SubGrp G A N w S 0 G + ˙ w = w
27 22 24 26 3eqtr3d S SubGrp G A N w S A + ˙ inv g G A + ˙ w = w
28 simpr S SubGrp G A N w S w S
29 27 28 eqeltrd S SubGrp G A N w S A + ˙ inv g G A + ˙ w S
30 1 2 grpcl G Grp inv g G A X w X inv g G A + ˙ w X
31 7 13 16 30 syl3anc S SubGrp G A N w S inv g G A + ˙ w X
32 5 nmzbi A N inv g G A + ˙ w X A + ˙ inv g G A + ˙ w S inv g G A + ˙ w + ˙ A S
33 9 31 32 syl2anc S SubGrp G A N w S A + ˙ inv g G A + ˙ w S inv g G A + ˙ w + ˙ A S
34 29 33 mpbid S SubGrp G A N w S inv g G A + ˙ w + ˙ A S
35 18 34 eqeltrrd S SubGrp G A N w S inv g G A + ˙ w + ˙ A S
36 oveq2 x = inv g G A + ˙ w + ˙ A A + ˙ x = A + ˙ inv g G A + ˙ w + ˙ A
37 36 oveq1d x = inv g G A + ˙ w + ˙ A A + ˙ x - ˙ A = A + ˙ inv g G A + ˙ w + ˙ A - ˙ A
38 ovex A + ˙ inv g G A + ˙ w + ˙ A - ˙ A V
39 37 4 38 fvmpt inv g G A + ˙ w + ˙ A S F inv g G A + ˙ w + ˙ A = A + ˙ inv g G A + ˙ w + ˙ A - ˙ A
40 35 39 syl S SubGrp G A N w S F inv g G A + ˙ w + ˙ A = A + ˙ inv g G A + ˙ w + ˙ A - ˙ A
41 21 oveq1d S SubGrp G A N w S A + ˙ inv g G A + ˙ w + ˙ A = 0 G + ˙ w + ˙ A
42 1 2 grpcl G Grp w X A X w + ˙ A X
43 7 16 10 42 syl3anc S SubGrp G A N w S w + ˙ A X
44 1 2 grpass G Grp A X inv g G A X w + ˙ A X A + ˙ inv g G A + ˙ w + ˙ A = A + ˙ inv g G A + ˙ w + ˙ A
45 7 10 13 43 44 syl13anc S SubGrp G A N w S A + ˙ inv g G A + ˙ w + ˙ A = A + ˙ inv g G A + ˙ w + ˙ A
46 1 2 19 grplid G Grp w + ˙ A X 0 G + ˙ w + ˙ A = w + ˙ A
47 7 43 46 syl2anc S SubGrp G A N w S 0 G + ˙ w + ˙ A = w + ˙ A
48 41 45 47 3eqtr3d S SubGrp G A N w S A + ˙ inv g G A + ˙ w + ˙ A = w + ˙ A
49 48 oveq1d S SubGrp G A N w S A + ˙ inv g G A + ˙ w + ˙ A - ˙ A = w + ˙ A - ˙ A
50 1 2 3 grppncan G Grp w X A X w + ˙ A - ˙ A = w
51 7 16 10 50 syl3anc S SubGrp G A N w S w + ˙ A - ˙ A = w
52 40 49 51 3eqtrd S SubGrp G A N w S F inv g G A + ˙ w + ˙ A = w
53 ovex A + ˙ x - ˙ A V
54 53 4 fnmpti F Fn S
55 fnfvelrn F Fn S inv g G A + ˙ w + ˙ A S F inv g G A + ˙ w + ˙ A ran F
56 54 35 55 sylancr S SubGrp G A N w S F inv g G A + ˙ w + ˙ A ran F
57 52 56 eqeltrrd S SubGrp G A N w S w ran F
58 57 ex S SubGrp G A N w S w ran F
59 58 ssrdv S SubGrp G A N S ran F
60 6 ad2antrr S SubGrp G A N x S G Grp
61 simplr S SubGrp G A N x S A N
62 8 61 sseldi S SubGrp G A N x S A X
63 15 sselda S SubGrp G A N x S x X
64 1 2 3 grpaddsubass G Grp A X x X A X A + ˙ x - ˙ A = A + ˙ x - ˙ A
65 60 62 63 62 64 syl13anc S SubGrp G A N x S A + ˙ x - ˙ A = A + ˙ x - ˙ A
66 1 2 3 grpnpcan G Grp x X A X x - ˙ A + ˙ A = x
67 60 63 62 66 syl3anc S SubGrp G A N x S x - ˙ A + ˙ A = x
68 simpr S SubGrp G A N x S x S
69 67 68 eqeltrd S SubGrp G A N x S x - ˙ A + ˙ A S
70 1 3 grpsubcl G Grp x X A X x - ˙ A X
71 60 63 62 70 syl3anc S SubGrp G A N x S x - ˙ A X
72 5 nmzbi A N x - ˙ A X A + ˙ x - ˙ A S x - ˙ A + ˙ A S
73 61 71 72 syl2anc S SubGrp G A N x S A + ˙ x - ˙ A S x - ˙ A + ˙ A S
74 69 73 mpbird S SubGrp G A N x S A + ˙ x - ˙ A S
75 65 74 eqeltrd S SubGrp G A N x S A + ˙ x - ˙ A S
76 75 4 fmptd S SubGrp G A N F : S S
77 76 frnd S SubGrp G A N ran F S
78 59 77 eqssd S SubGrp G A N S = ran F