Metamath Proof Explorer


Theorem cpmadugsumlemC

Description: Lemma C for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
Assertion cpmadugsumlemC NFinRCRingMBs0bB0sTM×˙Yi=0si×˙X·˙Tbi=Yi=0si×˙X·˙TM×˙Tbi

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 eqid BaseY=BaseY
12 eqid 0Y=0Y
13 crngring RCRingRRing
14 3 ply1ring RRingPRing
15 13 14 syl RCRingPRing
16 15 anim2i NFinRCRingNFinPRing
17 4 matring NFinPRingYRing
18 16 17 syl NFinRCRingYRing
19 18 3adant3 NFinRCRingMBYRing
20 19 adantr NFinRCRingMBs0bB0sYRing
21 ovexd NFinRCRingMBs0bB0s0sV
22 5 1 2 3 4 mat2pmatbas NFinRRingMBTMBaseY
23 13 22 syl3an2 NFinRCRingMBTMBaseY
24 23 adantr NFinRCRingMBs0bB0sTMBaseY
25 16 3adant3 NFinRCRingMBNFinPRing
26 4 matlmod NFinPRingYLMod
27 25 26 syl NFinRCRingMBYLMod
28 27 ad2antrr NFinRCRingMBs0bB0si0sYLMod
29 eqid mulGrpP=mulGrpP
30 eqid BaseP=BaseP
31 29 30 mgpbas BaseP=BasemulGrpP
32 15 3ad2ant2 NFinRCRingMBPRing
33 29 ringmgp PRingmulGrpPMnd
34 32 33 syl NFinRCRingMBmulGrpPMnd
35 34 ad2antrr NFinRCRingMBs0bB0si0smulGrpPMnd
36 elfznn0 i0si0
37 36 adantl NFinRCRingMBs0bB0si0si0
38 13 3ad2ant2 NFinRCRingMBRRing
39 6 3 30 vr1cl RRingXBaseP
40 38 39 syl NFinRCRingMBXBaseP
41 40 ad2antrr NFinRCRingMBs0bB0si0sXBaseP
42 31 7 35 37 41 mulgnn0cld NFinRCRingMBs0bB0si0si×˙XBaseP
43 3 ply1crng RCRingPCRing
44 43 anim2i NFinRCRingNFinPCRing
45 44 3adant3 NFinRCRingMBNFinPCRing
46 4 matsca2 NFinPCRingP=ScalarY
47 45 46 syl NFinRCRingMBP=ScalarY
48 47 eqcomd NFinRCRingMBScalarY=P
49 48 fveq2d NFinRCRingMBBaseScalarY=BaseP
50 49 eleq2d NFinRCRingMBi×˙XBaseScalarYi×˙XBaseP
51 50 ad2antrr NFinRCRingMBs0bB0si0si×˙XBaseScalarYi×˙XBaseP
52 42 51 mpbird NFinRCRingMBs0bB0si0si×˙XBaseScalarY
53 simpll1 NFinRCRingMBs0bB0si0sNFin
54 38 ad2antrr NFinRCRingMBs0bB0si0sRRing
55 simplrl NFinRCRingMBs0bB0si0ss0
56 simprr NFinRCRingMBs0bB0sbB0s
57 56 anim1i NFinRCRingMBs0bB0si0sbB0si0s
58 1 2 3 4 5 m2pmfzmap NFinRRings0bB0si0sTbiBaseY
59 53 54 55 57 58 syl31anc NFinRCRingMBs0bB0si0sTbiBaseY
60 eqid ScalarY=ScalarY
61 eqid BaseScalarY=BaseScalarY
62 11 60 8 61 lmodvscl YLModi×˙XBaseScalarYTbiBaseYi×˙X·˙TbiBaseY
63 28 52 59 62 syl3anc NFinRCRingMBs0bB0si0si×˙X·˙TbiBaseY
64 simpl1 NFinRCRingMBs0bB0sNFin
65 38 adantr NFinRCRingMBs0bB0sRRing
66 simprl NFinRCRingMBs0bB0ss0
67 eqid i0si×˙X·˙Tbi=i0si×˙X·˙Tbi
68 fzfid NFinRRings0bB0s0sFin
69 ovexd NFinRRings0bB0si0si×˙X·˙TbiV
70 fvexd NFinRRings0bB0s0YV
71 67 68 69 70 fsuppmptdm NFinRRings0bB0sfinSupp0Yi0si×˙X·˙Tbi
72 64 65 66 56 71 syl31anc NFinRCRingMBs0bB0sfinSupp0Yi0si×˙X·˙Tbi
73 11 12 9 20 21 24 63 72 gsummulc2 NFinRCRingMBs0bB0sYi=0sTM×˙i×˙X·˙Tbi=TM×˙Yi=0si×˙X·˙Tbi
74 4 matassa NFinPCRingYAssAlg
75 44 74 syl NFinRCRingYAssAlg
76 75 3adant3 NFinRCRingMBYAssAlg
77 76 ad2antrr NFinRCRingMBs0bB0si0sYAssAlg
78 15 adantl NFinRCRingPRing
79 78 33 syl NFinRCRingmulGrpPMnd
80 79 3adant3 NFinRCRingMBmulGrpPMnd
81 80 ad2antrr NFinRCRingMBs0bB0si0smulGrpPMnd
82 31 7 81 37 41 mulgnn0cld NFinRCRingMBs0bB0si0si×˙XBaseP
83 49 ad2antrr NFinRCRingMBs0bB0si0sBaseScalarY=BaseP
84 82 83 eleqtrrd NFinRCRingMBs0bB0si0si×˙XBaseScalarY
85 23 ad2antrr NFinRCRingMBs0bB0si0sTMBaseY
86 11 60 61 8 9 assaassr YAssAlgi×˙XBaseScalarYTMBaseYTbiBaseYTM×˙i×˙X·˙Tbi=i×˙X·˙TM×˙Tbi
87 77 84 85 59 86 syl13anc NFinRCRingMBs0bB0si0sTM×˙i×˙X·˙Tbi=i×˙X·˙TM×˙Tbi
88 87 mpteq2dva NFinRCRingMBs0bB0si0sTM×˙i×˙X·˙Tbi=i0si×˙X·˙TM×˙Tbi
89 88 oveq2d NFinRCRingMBs0bB0sYi=0sTM×˙i×˙X·˙Tbi=Yi=0si×˙X·˙TM×˙Tbi
90 73 89 eqtr3d NFinRCRingMBs0bB0sTM×˙Yi=0si×˙X·˙Tbi=Yi=0si×˙X·˙TM×˙Tbi