| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadugsum.a |
|
| 2 |
|
cpmadugsum.b |
|
| 3 |
|
cpmadugsum.p |
|
| 4 |
|
cpmadugsum.y |
|
| 5 |
|
cpmadugsum.t |
|
| 6 |
|
cpmadugsum.x |
|
| 7 |
|
cpmadugsum.e |
|
| 8 |
|
cpmadugsum.m |
|
| 9 |
|
cpmadugsum.r |
|
| 10 |
|
cpmadugsum.1 |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
crngring |
|
| 14 |
3
|
ply1ring |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
anim2i |
|
| 17 |
4
|
matring |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
3adant3 |
|
| 20 |
19
|
adantr |
|
| 21 |
|
ovexd |
|
| 22 |
5 1 2 3 4
|
mat2pmatbas |
|
| 23 |
13 22
|
syl3an2 |
|
| 24 |
23
|
adantr |
|
| 25 |
16
|
3adant3 |
|
| 26 |
4
|
matlmod |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
ad2antrr |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
29 30
|
mgpbas |
|
| 32 |
15
|
3ad2ant2 |
|
| 33 |
29
|
ringmgp |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
elfznn0 |
|
| 37 |
36
|
adantl |
|
| 38 |
13
|
3ad2ant2 |
|
| 39 |
6 3 30
|
vr1cl |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
31 7 35 37 41
|
mulgnn0cld |
|
| 43 |
3
|
ply1crng |
|
| 44 |
43
|
anim2i |
|
| 45 |
44
|
3adant3 |
|
| 46 |
4
|
matsca2 |
|
| 47 |
45 46
|
syl |
|
| 48 |
47
|
eqcomd |
|
| 49 |
48
|
fveq2d |
|
| 50 |
49
|
eleq2d |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
42 51
|
mpbird |
|
| 53 |
|
simpll1 |
|
| 54 |
38
|
ad2antrr |
|
| 55 |
|
simplrl |
|
| 56 |
|
simprr |
|
| 57 |
56
|
anim1i |
|
| 58 |
1 2 3 4 5
|
m2pmfzmap |
|
| 59 |
53 54 55 57 58
|
syl31anc |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
11 60 8 61
|
lmodvscl |
|
| 63 |
28 52 59 62
|
syl3anc |
|
| 64 |
|
simpl1 |
|
| 65 |
38
|
adantr |
|
| 66 |
|
simprl |
|
| 67 |
|
eqid |
|
| 68 |
|
fzfid |
|
| 69 |
|
ovexd |
|
| 70 |
|
fvexd |
|
| 71 |
67 68 69 70
|
fsuppmptdm |
|
| 72 |
64 65 66 56 71
|
syl31anc |
|
| 73 |
11 12 9 20 21 24 63 72
|
gsummulc2 |
|
| 74 |
4
|
matassa |
|
| 75 |
44 74
|
syl |
|
| 76 |
75
|
3adant3 |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
15
|
adantl |
|
| 79 |
78 33
|
syl |
|
| 80 |
79
|
3adant3 |
|
| 81 |
80
|
ad2antrr |
|
| 82 |
31 7 81 37 41
|
mulgnn0cld |
|
| 83 |
49
|
ad2antrr |
|
| 84 |
82 83
|
eleqtrrd |
|
| 85 |
23
|
ad2antrr |
|
| 86 |
11 60 61 8 9
|
assaassr |
|
| 87 |
77 84 85 59 86
|
syl13anc |
|
| 88 |
87
|
mpteq2dva |
|
| 89 |
88
|
oveq2d |
|
| 90 |
73 89
|
eqtr3d |
|