Metamath Proof Explorer


Theorem crctcshwlkn0lem6

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypotheses crctcshwlkn0lem.s φS1..^N
crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
crctcshwlkn0lem.h H=FcyclShiftS
crctcshwlkn0lem.n N=F
crctcshwlkn0lem.f φFWordA
crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
crctcshwlkn0lem.e φPN=P0
Assertion crctcshwlkn0lem6 φJ=NSif-QJ=QJ+1IHJ=QJQJQJ+1IHJ

Proof

Step Hyp Ref Expression
1 crctcshwlkn0lem.s φS1..^N
2 crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
3 crctcshwlkn0lem.h H=FcyclShiftS
4 crctcshwlkn0lem.n N=F
5 crctcshwlkn0lem.f φFWordA
6 crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
7 crctcshwlkn0lem.e φPN=P0
8 oveq1 i=0i+1=0+1
9 0p1e1 0+1=1
10 8 9 eqtrdi i=0i+1=1
11 wkslem2 i=0i+1=1if-Pi=Pi+1IFi=PiPiPi+1IFiif-P0=P1IF0=P0P0P1IF0
12 10 11 mpdan i=0if-Pi=Pi+1IFi=PiPiPi+1IFiif-P0=P1IF0=P0P0P1IF0
13 elfzo1 S1..^NSNS<N
14 simp2 SNS<NN
15 13 14 sylbi S1..^NN
16 1 15 syl φN
17 lbfzo0 00..^NN
18 16 17 sylibr φ00..^N
19 12 6 18 rspcdva φif-P0=P1IF0=P0P0P1IF0
20 eqeq1 PN=P0PN=P1P0=P1
21 sneq PN=P0PN=P0
22 21 eqeq2d PN=P0IF0=PNIF0=P0
23 preq1 PN=P0PNP1=P0P1
24 23 sseq1d PN=P0PNP1IF0P0P1IF0
25 20 22 24 ifpbi123d PN=P0if-PN=P1IF0=PNPNP1IF0if-P0=P1IF0=P0P0P1IF0
26 7 25 syl φif-PN=P1IF0=PNPNP1IF0if-P0=P1IF0=P0P0P1IF0
27 19 26 mpbird φif-PN=P1IF0=PNPNP1IF0
28 nncn NN
29 nncn SS
30 npcan NSN-S+S=N
31 28 29 30 syl2anr SNN-S+S=N
32 simpr SNN-S+S=NN-S+S=N
33 oveq1 N-S+S=NN-S+SmodF=NmodF
34 4 eqcomi F=N
35 34 a1i SNF=N
36 35 oveq2d SNNmodF=NmodN
37 nnrp NN+
38 modid0 N+NmodN=0
39 37 38 syl NNmodN=0
40 39 adantl SNNmodN=0
41 36 40 eqtrd SNNmodF=0
42 33 41 sylan9eqr SNN-S+S=NN-S+SmodF=0
43 simpl SNN-S+S=NSN
44 32 42 43 3jca SNN-S+S=NN-S+S=NN-S+SmodF=0SN
45 31 44 mpdan SNN-S+S=NN-S+SmodF=0SN
46 45 3adant3 SNS<NN-S+S=NN-S+SmodF=0SN
47 13 46 sylbi S1..^NN-S+S=NN-S+SmodF=0SN
48 simp1 N-S+S=NN-S+SmodF=0SNN-S+S=N
49 48 fveq2d N-S+S=NN-S+SmodF=0SNPN-S+S=PN
50 49 eqeq1d N-S+S=NN-S+SmodF=0SNPN-S+S=P1PN=P1
51 simp2 N-S+S=NN-S+SmodF=0SNN-S+SmodF=0
52 51 fveq2d N-S+S=NN-S+SmodF=0SNFN-S+SmodF=F0
53 52 fveq2d N-S+S=NN-S+SmodF=0SNIFN-S+SmodF=IF0
54 49 sneqd N-S+S=NN-S+SmodF=0SNPN-S+S=PN
55 53 54 eqeq12d N-S+S=NN-S+SmodF=0SNIFN-S+SmodF=PN-S+SIF0=PN
56 49 preq1d N-S+S=NN-S+SmodF=0SNPN-S+SP1=PNP1
57 56 53 sseq12d N-S+S=NN-S+SmodF=0SNPN-S+SP1IFN-S+SmodFPNP1IF0
58 50 55 57 ifpbi123d N-S+S=NN-S+SmodF=0SNif-PN-S+S=P1IFN-S+SmodF=PN-S+SPN-S+SP1IFN-S+SmodFif-PN=P1IF0=PNPNP1IF0
59 1 47 58 3syl φif-PN-S+S=P1IFN-S+SmodF=PN-S+SPN-S+SP1IFN-S+SmodFif-PN=P1IF0=PNPNP1IF0
60 27 59 mpbird φif-PN-S+S=P1IFN-S+SmodF=PN-S+SPN-S+SP1IFN-S+SmodF
61 nnsub SNS<NNS
62 61 biimp3a SNS<NNS
63 62 nnnn0d SNS<NNS0
64 13 63 sylbi S1..^NNS0
65 1 64 syl φNS0
66 nn0fz0 NS0NS0NS
67 65 66 sylib φNS0NS
68 1 2 crctcshwlkn0lem2 φNS0NSQNS=PN-S+S
69 67 68 mpdan φQNS=PN-S+S
70 elfzoel2 S1..^NN
71 elfzoelz S1..^NS
72 70 71 zsubcld S1..^NNS
73 72 peano2zd S1..^NN-S+1
74 nnre NN
75 74 anim1i NSNS
76 75 ancoms SNNS
77 crctcshwlkn0lem1 NSN-S+1N
78 76 77 syl SNN-S+1N
79 78 3adant3 SNS<NN-S+1N
80 13 79 sylbi S1..^NN-S+1N
81 73 70 80 3jca S1..^NN-S+1NN-S+1N
82 1 81 syl φN-S+1NN-S+1N
83 eluz2 NN-S+1N-S+1NN-S+1N
84 82 83 sylibr φNN-S+1
85 eluzfz1 NN-S+1N-S+1N-S+1N
86 84 85 syl φN-S+1N-S+1N
87 1 2 crctcshwlkn0lem3 φN-S+1N-S+1NQN-S+1=PN-S+1+S-N
88 86 87 mpdan φQN-S+1=PN-S+1+S-N
89 subcl NSNS
90 89 ancoms SNNS
91 ax-1cn 1
92 pncan2 NS1NS+1-NS=1
93 92 eqcomd NS11=NS+1-NS
94 90 91 93 sylancl SN1=NS+1-NS
95 peano2cn NSN-S+1
96 90 95 syl SNN-S+1
97 simpr SNN
98 simpl SNS
99 96 97 98 subsub3d SNNS+1-NS=N-S+1+S-N
100 94 99 eqtr2d SNN-S+1+S-N=1
101 29 28 100 syl2an SNN-S+1+S-N=1
102 101 3adant3 SNS<NN-S+1+S-N=1
103 13 102 sylbi S1..^NN-S+1+S-N=1
104 1 103 syl φN-S+1+S-N=1
105 104 fveq2d φPN-S+1+S-N=P1
106 88 105 eqtrd φQN-S+1=P1
107 3 fveq1i HNS=FcyclShiftSNS
108 5 adantr φS1..^NFWordA
109 71 adantl φS1..^NS
110 elfzofz S1..^NS1N
111 ubmelfzo S1NNS0..^N
112 110 111 syl S1..^NNS0..^N
113 112 adantl φS1..^NNS0..^N
114 34 oveq2i 0..^F=0..^N
115 113 114 eleqtrrdi φS1..^NNS0..^F
116 cshwidxmod FWordASNS0..^FFcyclShiftSNS=FN-S+SmodF
117 108 109 115 116 syl3anc φS1..^NFcyclShiftSNS=FN-S+SmodF
118 1 117 mpdan φFcyclShiftSNS=FN-S+SmodF
119 107 118 eqtrid φHNS=FN-S+SmodF
120 simp1 QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFQNS=PN-S+S
121 simp2 QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFQN-S+1=P1
122 120 121 eqeq12d QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFQNS=QN-S+1PN-S+S=P1
123 simp3 QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFHNS=FN-S+SmodF
124 123 fveq2d QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFIHNS=IFN-S+SmodF
125 120 sneqd QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFQNS=PN-S+S
126 124 125 eqeq12d QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFIHNS=QNSIFN-S+SmodF=PN-S+S
127 120 121 preq12d QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFQNSQN-S+1=PN-S+SP1
128 127 124 sseq12d QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFQNSQN-S+1IHNSPN-S+SP1IFN-S+SmodF
129 122 126 128 ifpbi123d QNS=PN-S+SQN-S+1=P1HNS=FN-S+SmodFif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNSif-PN-S+S=P1IFN-S+SmodF=PN-S+SPN-S+SP1IFN-S+SmodF
130 69 106 119 129 syl3anc φif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNSif-PN-S+S=P1IFN-S+SmodF=PN-S+SPN-S+SP1IFN-S+SmodF
131 60 130 mpbird φif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
132 131 adantr φJ=NSif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
133 wkslem1 J=NSif-QJ=QJ+1IHJ=QJQJQJ+1IHJif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
134 133 adantl φJ=NSif-QJ=QJ+1IHJ=QJQJQJ+1IHJif-QNS=QN-S+1IHNS=QNSQNSQN-S+1IHNS
135 132 134 mpbird φJ=NSif-QJ=QJ+1IHJ=QJQJQJ+1IHJ