Metamath Proof Explorer


Theorem cvgcmp

Description: A comparison test for convergence of a real infinite series. Exercise 3 of Gleason p. 182. (Contributed by NM, 1-May-2005) (Revised by Mario Carneiro, 24-Mar-2014)

Ref Expression
Hypotheses cvgcmp.1 Z=M
cvgcmp.2 φNZ
cvgcmp.3 φkZFk
cvgcmp.4 φkZGk
cvgcmp.5 φseqM+Fdom
cvgcmp.6 φkN0Gk
cvgcmp.7 φkNGkFk
Assertion cvgcmp φseqM+Gdom

Proof

Step Hyp Ref Expression
1 cvgcmp.1 Z=M
2 cvgcmp.2 φNZ
3 cvgcmp.3 φkZFk
4 cvgcmp.4 φkZGk
5 cvgcmp.5 φseqM+Fdom
6 cvgcmp.6 φkN0Gk
7 cvgcmp.7 φkNGkFk
8 seqex seqM+GV
9 8 a1i φseqM+GV
10 2 1 eleqtrdi φNM
11 eluzel2 NMM
12 10 11 syl φM
13 1 climcau MseqM+Fdomx+mZnmseqM+FnseqM+Fm<x
14 12 5 13 syl2anc φx+mZnmseqM+FnseqM+Fm<x
15 1 12 3 serfre φseqM+F:Z
16 15 ffvelcdmda φnZseqM+Fn
17 16 recnd φnZseqM+Fn
18 17 ralrimiva φnZseqM+Fn
19 1 r19.29uz nZseqM+FnmZnmseqM+FnseqM+Fm<xmZnmseqM+FnseqM+FnseqM+Fm<x
20 19 ex nZseqM+FnmZnmseqM+FnseqM+Fm<xmZnmseqM+FnseqM+FnseqM+Fm<x
21 18 20 syl φmZnmseqM+FnseqM+Fm<xmZnmseqM+FnseqM+FnseqM+Fm<x
22 21 ralimdv φx+mZnmseqM+FnseqM+Fm<xx+mZnmseqM+FnseqM+FnseqM+Fm<x
23 14 22 mpd φx+mZnmseqM+FnseqM+FnseqM+Fm<x
24 1 uztrn2 NZnNnZ
25 2 24 sylan φnNnZ
26 1 12 4 serfre φseqM+G:Z
27 26 ffvelcdmda φnZseqM+Gn
28 27 recnd φnZseqM+Gn
29 25 28 syldan φnNseqM+Gn
30 29 ralrimiva φnNseqM+Gn
31 30 adantr φx+nNseqM+Gn
32 simpll φx+mNnmφ
33 32 15 syl φx+mNnmseqM+F:Z
34 32 2 syl φx+mNnmNZ
35 simprl φx+mNnmmN
36 1 uztrn2 NZmNmZ
37 34 35 36 syl2anc φx+mNnmmZ
38 33 37 ffvelcdmd φx+mNnmseqM+Fm
39 eqid N=N
40 39 uztrn2 mNnmnN
41 40 adantl φx+mNnmnN
42 34 41 24 syl2anc φx+mNnmnZ
43 32 42 16 syl2anc φx+mNnmseqM+Fn
44 32 42 27 syl2anc φx+mNnmseqM+Gn
45 32 26 syl φx+mNnmseqM+G:Z
46 45 37 ffvelcdmd φx+mNnmseqM+Gm
47 44 46 resubcld φx+mNnmseqM+GnseqM+Gm
48 37 1 eleqtrdi φx+mNnmmM
49 simprr φx+mNnmnm
50 elfzuz kMnkM
51 50 1 eleqtrrdi kMnkZ
52 fveq2 m=kFm=Fk
53 fveq2 m=kGm=Gk
54 52 53 oveq12d m=kFmGm=FkGk
55 eqid mZFmGm=mZFmGm
56 ovex FkGkV
57 54 55 56 fvmpt kZmZFmGmk=FkGk
58 57 adantl φkZmZFmGmk=FkGk
59 3 4 resubcld φkZFkGk
60 58 59 eqeltrd φkZmZFmGmk
61 32 51 60 syl2an φx+mNnmkMnmZFmGmk
62 elfzuz km+1nkm+1
63 peano2uz mNm+1N
64 35 63 syl φx+mNnmm+1N
65 39 uztrn2 m+1Nkm+1kN
66 64 65 sylan φx+mNnmkm+1kN
67 1 uztrn2 NZkNkZ
68 2 67 sylan φkNkZ
69 3 4 subge0d φkZ0FkGkGkFk
70 68 69 syldan φkN0FkGkGkFk
71 7 70 mpbird φkN0FkGk
72 68 57 syl φkNmZFmGmk=FkGk
73 71 72 breqtrrd φkN0mZFmGmk
74 32 66 73 syl2an2r φx+mNnmkm+10mZFmGmk
75 62 74 sylan2 φx+mNnmkm+1n0mZFmGmk
76 48 49 61 75 sermono φx+mNnmseqM+mZFmGmmseqM+mZFmGmn
77 elfzuz kMmkM
78 77 1 eleqtrrdi kMmkZ
79 3 recnd φkZFk
80 32 78 79 syl2an φx+mNnmkMmFk
81 4 recnd φkZGk
82 32 78 81 syl2an φx+mNnmkMmGk
83 32 78 58 syl2an φx+mNnmkMmmZFmGmk=FkGk
84 48 80 82 83 sersub φx+mNnmseqM+mZFmGmm=seqM+FmseqM+Gm
85 42 1 eleqtrdi φx+mNnmnM
86 32 51 79 syl2an φx+mNnmkMnFk
87 32 51 81 syl2an φx+mNnmkMnGk
88 32 51 58 syl2an φx+mNnmkMnmZFmGmk=FkGk
89 85 86 87 88 sersub φx+mNnmseqM+mZFmGmn=seqM+FnseqM+Gn
90 76 84 89 3brtr3d φx+mNnmseqM+FmseqM+GmseqM+FnseqM+Gn
91 43 44 resubcld φx+mNnmseqM+FnseqM+Gn
92 38 46 91 lesubaddd φx+mNnmseqM+FmseqM+GmseqM+FnseqM+GnseqM+FmseqM+Fn-seqM+Gn+seqM+Gm
93 90 92 mpbid φx+mNnmseqM+FmseqM+Fn-seqM+Gn+seqM+Gm
94 43 recnd φx+mNnmseqM+Fn
95 44 recnd φx+mNnmseqM+Gn
96 46 recnd φx+mNnmseqM+Gm
97 94 95 96 subsubd φx+mNnmseqM+FnseqM+GnseqM+Gm=seqM+Fn-seqM+Gn+seqM+Gm
98 93 97 breqtrrd φx+mNnmseqM+FmseqM+FnseqM+GnseqM+Gm
99 38 43 47 98 lesubd φx+mNnmseqM+GnseqM+GmseqM+FnseqM+Fm
100 43 38 resubcld φx+mNnmseqM+FnseqM+Fm
101 rpre x+x
102 101 ad2antlr φx+mNnmx
103 lelttr seqM+GnseqM+GmseqM+FnseqM+FmxseqM+GnseqM+GmseqM+FnseqM+FmseqM+FnseqM+Fm<xseqM+GnseqM+Gm<x
104 47 100 102 103 syl3anc φx+mNnmseqM+GnseqM+GmseqM+FnseqM+FmseqM+FnseqM+Fm<xseqM+GnseqM+Gm<x
105 99 104 mpand φx+mNnmseqM+FnseqM+Fm<xseqM+GnseqM+Gm<x
106 32 51 3 syl2an φx+mNnmkMnFk
107 62 66 sylan2 φx+mNnmkm+1nkN
108 0red φkN0
109 68 4 syldan φkNGk
110 68 3 syldan φkNFk
111 108 109 110 6 7 letrd φkN0Fk
112 32 107 111 syl2an2r φx+mNnmkm+1n0Fk
113 48 49 106 112 sermono φx+mNnmseqM+FmseqM+Fn
114 38 43 113 abssubge0d φx+mNnmseqM+FnseqM+Fm=seqM+FnseqM+Fm
115 114 breq1d φx+mNnmseqM+FnseqM+Fm<xseqM+FnseqM+Fm<x
116 32 51 4 syl2an φx+mNnmkMnGk
117 32 66 6 syl2an2r φx+mNnmkm+10Gk
118 62 117 sylan2 φx+mNnmkm+1n0Gk
119 48 49 116 118 sermono φx+mNnmseqM+GmseqM+Gn
120 46 44 119 abssubge0d φx+mNnmseqM+GnseqM+Gm=seqM+GnseqM+Gm
121 120 breq1d φx+mNnmseqM+GnseqM+Gm<xseqM+GnseqM+Gm<x
122 105 115 121 3imtr4d φx+mNnmseqM+FnseqM+Fm<xseqM+GnseqM+Gm<x
123 122 anassrs φx+mNnmseqM+FnseqM+Fm<xseqM+GnseqM+Gm<x
124 123 adantld φx+mNnmseqM+FnseqM+FnseqM+Fm<xseqM+GnseqM+Gm<x
125 124 ralimdva φx+mNnmseqM+FnseqM+FnseqM+Fm<xnmseqM+GnseqM+Gm<x
126 125 reximdva φx+mNnmseqM+FnseqM+FnseqM+Fm<xmNnmseqM+GnseqM+Gm<x
127 39 r19.29uz nNseqM+GnmNnmseqM+GnseqM+Gm<xmNnmseqM+GnseqM+GnseqM+Gm<x
128 31 126 127 syl6an φx+mNnmseqM+FnseqM+FnseqM+Fm<xmNnmseqM+GnseqM+GnseqM+Gm<x
129 128 ralimdva φx+mNnmseqM+FnseqM+FnseqM+Fm<xx+mNnmseqM+GnseqM+GnseqM+Gm<x
130 1 39 cau4 NZx+mZnmseqM+FnseqM+FnseqM+Fm<xx+mNnmseqM+FnseqM+FnseqM+Fm<x
131 2 130 syl φx+mZnmseqM+FnseqM+FnseqM+Fm<xx+mNnmseqM+FnseqM+FnseqM+Fm<x
132 1 39 cau4 NZx+mZnmseqM+GnseqM+GnseqM+Gm<xx+mNnmseqM+GnseqM+GnseqM+Gm<x
133 2 132 syl φx+mZnmseqM+GnseqM+GnseqM+Gm<xx+mNnmseqM+GnseqM+GnseqM+Gm<x
134 129 131 133 3imtr4d φx+mZnmseqM+FnseqM+FnseqM+Fm<xx+mZnmseqM+GnseqM+GnseqM+Gm<x
135 23 134 mpd φx+mZnmseqM+GnseqM+GnseqM+Gm<x
136 1 uztrn2 mZnmnZ
137 simpr seqM+GnseqM+GnseqM+Gm<xseqM+GnseqM+Gm<x
138 27 biantrurd φnZseqM+GnseqM+Gm<xseqM+GnseqM+GnseqM+Gm<x
139 137 138 imbitrid φnZseqM+GnseqM+GnseqM+Gm<xseqM+GnseqM+GnseqM+Gm<x
140 136 139 sylan2 φmZnmseqM+GnseqM+GnseqM+Gm<xseqM+GnseqM+GnseqM+Gm<x
141 140 anassrs φmZnmseqM+GnseqM+GnseqM+Gm<xseqM+GnseqM+GnseqM+Gm<x
142 141 ralimdva φmZnmseqM+GnseqM+GnseqM+Gm<xnmseqM+GnseqM+GnseqM+Gm<x
143 142 reximdva φmZnmseqM+GnseqM+GnseqM+Gm<xmZnmseqM+GnseqM+GnseqM+Gm<x
144 143 ralimdv φx+mZnmseqM+GnseqM+GnseqM+Gm<xx+mZnmseqM+GnseqM+GnseqM+Gm<x
145 135 144 mpd φx+mZnmseqM+GnseqM+GnseqM+Gm<x
146 1 9 145 caurcvg2 φseqM+Gdom