Metamath Proof Explorer


Theorem cvmliftlem13

Description: Lemma for cvmlift . The initial value of K is P because Q ( 1 ) is a subset of K which takes value P at 0 . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem.k K=k=1NQk
Assertion cvmliftlem13 φK0=P

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem.k K=k=1NQk
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem11 φKIICnCFK=G
15 14 simpld φKIICnC
16 iiuni 01=II
17 16 2 cnf KIICnCK:01B
18 15 17 syl φK:01B
19 18 ffund φFunK
20 nnuz =1
21 8 20 eleqtrdi φN1
22 eluzfz1 N111N
23 21 22 syl φ11N
24 fveq2 k=1Qk=Q1
25 24 ssiun2s 11NQ1k=1NQk
26 23 25 syl φQ1k=1NQk
27 26 13 sseqtrrdi φQ1K
28 0xr 0*
29 28 a1i φ0*
30 8 nnrecred φ1N
31 30 rexrd φ1N*
32 1red φ1
33 0le1 01
34 33 a1i φ01
35 8 nnred φN
36 8 nngt0d φ0<N
37 divge0 101N0<N01N
38 32 34 35 36 37 syl22anc φ01N
39 lbicc2 0*1N*01N001N
40 29 31 38 39 syl3anc φ001N
41 1m1e0 11=0
42 41 oveq1i 11N=0N
43 8 nncnd φN
44 8 nnne0d φN0
45 43 44 div0d φ0N=0
46 42 45 eqtrid φ11N=0
47 46 oveq1d φ11N1N=01N
48 40 47 eleqtrrd φ011N1N
49 eqid 11N1N=11N1N
50 simpr φ11N11N
51 1 2 3 4 5 6 7 8 9 10 11 12 49 cvmliftlem7 φ11NQ1111NF-1G11N
52 1 2 3 4 5 6 7 8 9 10 11 12 49 50 51 cvmliftlem6 φ11NQ1:11N1NBFQ1=G11N1N
53 23 52 mpdan φQ1:11N1NBFQ1=G11N1N
54 53 simpld φQ1:11N1NB
55 54 fdmd φdomQ1=11N1N
56 48 55 eleqtrrd φ0domQ1
57 funssfv FunKQ1K0domQ1K0=Q10
58 19 27 56 57 syl3anc φK0=Q10
59 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem9 φ11NQ111N=Q1111N
60 23 59 mpdan φQ111N=Q1111N
61 46 fveq2d φQ111N=Q10
62 41 fveq2i Q11=Q0
63 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem4 Q0=0P
64 62 63 eqtri Q11=0P
65 64 a1i φQ11=0P
66 65 46 fveq12d φQ1111N=0P0
67 60 61 66 3eqtr3d φQ10=0P0
68 0nn0 00
69 fvsng 00PB0P0=P
70 68 6 69 sylancr φ0P0=P
71 58 67 70 3eqtrd φK0=P