Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|
2 |
|
cvmliftlem.b |
|
3 |
|
cvmliftlem.x |
|
4 |
|
cvmliftlem.f |
|
5 |
|
cvmliftlem.g |
|
6 |
|
cvmliftlem.p |
|
7 |
|
cvmliftlem.e |
|
8 |
|
cvmliftlem.n |
|
9 |
|
cvmliftlem.t |
|
10 |
|
cvmliftlem.a |
|
11 |
|
cvmliftlem.l |
|
12 |
|
cvmliftlem.q |
|
13 |
|
cvmliftlem.k |
|
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem11 |
|
15 |
14
|
simpld |
|
16 |
|
iiuni |
|
17 |
16 2
|
cnf |
|
18 |
15 17
|
syl |
|
19 |
18
|
ffund |
|
20 |
|
nnuz |
|
21 |
8 20
|
eleqtrdi |
|
22 |
|
eluzfz1 |
|
23 |
21 22
|
syl |
|
24 |
|
fveq2 |
|
25 |
24
|
ssiun2s |
|
26 |
23 25
|
syl |
|
27 |
26 13
|
sseqtrrdi |
|
28 |
|
0xr |
|
29 |
28
|
a1i |
|
30 |
8
|
nnrecred |
|
31 |
30
|
rexrd |
|
32 |
|
1red |
|
33 |
|
0le1 |
|
34 |
33
|
a1i |
|
35 |
8
|
nnred |
|
36 |
8
|
nngt0d |
|
37 |
|
divge0 |
|
38 |
32 34 35 36 37
|
syl22anc |
|
39 |
|
lbicc2 |
|
40 |
29 31 38 39
|
syl3anc |
|
41 |
|
1m1e0 |
|
42 |
41
|
oveq1i |
|
43 |
8
|
nncnd |
|
44 |
8
|
nnne0d |
|
45 |
43 44
|
div0d |
|
46 |
42 45
|
eqtrid |
|
47 |
46
|
oveq1d |
|
48 |
40 47
|
eleqtrrd |
|
49 |
|
eqid |
|
50 |
|
simpr |
|
51 |
1 2 3 4 5 6 7 8 9 10 11 12 49
|
cvmliftlem7 |
|
52 |
1 2 3 4 5 6 7 8 9 10 11 12 49 50 51
|
cvmliftlem6 |
|
53 |
23 52
|
mpdan |
|
54 |
53
|
simpld |
|
55 |
54
|
fdmd |
|
56 |
48 55
|
eleqtrrd |
|
57 |
|
funssfv |
|
58 |
19 27 56 57
|
syl3anc |
|
59 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem9 |
|
60 |
23 59
|
mpdan |
|
61 |
46
|
fveq2d |
|
62 |
41
|
fveq2i |
|
63 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem4 |
|
64 |
62 63
|
eqtri |
|
65 |
64
|
a1i |
|
66 |
65 46
|
fveq12d |
|
67 |
60 61 66
|
3eqtr3d |
|
68 |
|
0nn0 |
|
69 |
|
fvsng |
|
70 |
68 6 69
|
sylancr |
|
71 |
58 67 70
|
3eqtrd |
|