Metamath Proof Explorer


Theorem cxpsqrt

Description: The complex exponential function with exponent 1 / 2 exactly matches the complex square root function (the branch cut is in the same place for both functions), and thus serves as a suitable generalization to other n -th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpsqrt AA12=A

Proof

Step Hyp Ref Expression
1 halfcn 12
2 halfre 12
3 halfgt0 0<12
4 2 3 gt0ne0ii 120
5 0cxp 12120012=0
6 1 4 5 mp2an 012=0
7 sqrt0 0=0
8 6 7 eqtr4i 012=0
9 oveq1 A=0A12=012
10 fveq2 A=0A=0
11 8 9 10 3eqtr4a A=0A12=A
12 11 a1i AA=0A12=A
13 ax-icn i
14 sqrtcl AA
15 14 ad2antrr AA0A12=AA
16 sqmul iAiA2=i2A2
17 13 15 16 sylancr AA0A12=AiA2=i2A2
18 i2 i2=1
19 18 a1i AA0A12=Ai2=1
20 sqrtth AA2=A
21 20 ad2antrr AA0A12=AA2=A
22 19 21 oveq12d AA0A12=Ai2A2=-1A
23 mulm1 A-1A=A
24 23 ad2antrr AA0A12=A-1A=A
25 17 22 24 3eqtrd AA0A12=AiA2=A
26 cxpsqrtlem AA0A12=AiA
27 26 resqcld AA0A12=AiA2
28 25 27 eqeltrrd AA0A12=AA
29 negeq0 AA=0A=0
30 29 necon3bid AA0A0
31 30 biimpa AA0A0
32 31 adantr AA0A12=AA0
33 25 32 eqnetrd AA0A12=AiA20
34 sq0i iA=0iA2=0
35 34 necon3i iA20iA0
36 33 35 syl AA0A12=AiA0
37 26 36 sqgt0d AA0A12=A0<iA2
38 37 25 breqtrd AA0A12=A0<A
39 28 38 elrpd AA0A12=AA+
40 logneg A+logA=logA+iπ
41 39 40 syl AA0A12=AlogA=logA+iπ
42 negneg AA=A
43 42 ad2antrr AA0A12=AA=A
44 43 fveq2d AA0A12=AlogA=logA
45 39 relogcld AA0A12=AlogA
46 45 recnd AA0A12=AlogA
47 picn π
48 13 47 mulcli iπ
49 addcom logAiπlogA+iπ=iπ+logA
50 46 48 49 sylancl AA0A12=AlogA+iπ=iπ+logA
51 41 44 50 3eqtr3d AA0A12=AlogA=iπ+logA
52 51 oveq2d AA0A12=A12logA=12iπ+logA
53 adddi 12iπlogA12iπ+logA=12iπ+12logA
54 1 48 46 53 mp3an12i AA0A12=A12iπ+logA=12iπ+12logA
55 52 54 eqtrd AA0A12=A12logA=12iπ+12logA
56 2cn 2
57 2ne0 20
58 divrec2 iπ220iπ2=12iπ
59 48 56 57 58 mp3an iπ2=12iπ
60 13 47 56 57 divassi iπ2=iπ2
61 59 60 eqtr3i 12iπ=iπ2
62 61 oveq1i 12iπ+12logA=iπ2+12logA
63 55 62 eqtrdi AA0A12=A12logA=iπ2+12logA
64 63 fveq2d AA0A12=Ae12logA=eiπ2+12logA
65 47 56 57 divcli π2
66 13 65 mulcli iπ2
67 mulcl 12logA12logA
68 1 46 67 sylancr AA0A12=A12logA
69 efadd iπ212logAeiπ2+12logA=eiπ2e12logA
70 66 68 69 sylancr AA0A12=Aeiπ2+12logA=eiπ2e12logA
71 efhalfpi eiπ2=i
72 71 a1i AA0A12=Aeiπ2=i
73 negcl AA
74 73 ad2antrr AA0A12=AA
75 1 a1i AA0A12=A12
76 cxpef AA012A12=e12logA
77 74 32 75 76 syl3anc AA0A12=AA12=e12logA
78 ax-1cn 1
79 2halves 112+12=1
80 78 79 ax-mp 12+12=1
81 80 oveq2i A12+12=A1
82 cxp1 AA1=A
83 74 82 syl AA0A12=AA1=A
84 81 83 eqtrid AA0A12=AA12+12=A
85 rpcxpcl A+12A12+
86 39 2 85 sylancl AA0A12=AA12+
87 86 rpcnd AA0A12=AA12
88 87 sqvald AA0A12=AA122=A12A12
89 cxpadd AA01212A12+12=A12A12
90 74 32 75 75 89 syl211anc AA0A12=AA12+12=A12A12
91 88 90 eqtr4d AA0A12=AA122=A12+12
92 74 sqsqrtd AA0A12=AA2=A
93 84 91 92 3eqtr4d AA0A12=AA122=A2
94 86 rprege0d AA0A12=AA120A12
95 39 rpsqrtcld AA0A12=AA+
96 95 rprege0d AA0A12=AA0A
97 sq11 A120A12A0AA122=A2A12=A
98 94 96 97 syl2anc AA0A12=AA122=A2A12=A
99 93 98 mpbid AA0A12=AA12=A
100 77 99 eqtr3d AA0A12=Ae12logA=A
101 72 100 oveq12d AA0A12=Aeiπ2e12logA=iA
102 64 70 101 3eqtrd AA0A12=Ae12logA=iA
103 cxpef AA012A12=e12logA
104 1 103 mp3an3 AA0A12=e12logA
105 104 adantr AA0A12=AA12=e12logA
106 43 fveq2d AA0A12=AA=A
107 39 rpge0d AA0A12=A0A
108 28 107 sqrtnegd AA0A12=AA=iA
109 106 108 eqtr3d AA0A12=AA=iA
110 102 105 109 3eqtr4d AA0A12=AA12=A
111 110 ex AA0A12=AA12=A
112 80 oveq2i A12+12=A1
113 cxpadd AA01212A12+12=A12A12
114 1 1 113 mp3an23 AA0A12+12=A12A12
115 cxp1 AA1=A
116 115 adantr AA0A1=A
117 112 114 116 3eqtr3a AA0A12A12=A
118 cxpcl A12A12
119 1 118 mpan2 AA12
120 119 sqvald AA122=A12A12
121 120 adantr AA0A122=A12A12
122 20 adantr AA0A2=A
123 117 121 122 3eqtr4d AA0A122=A2
124 sqeqor A12AA122=A2A12=AA12=A
125 119 14 124 syl2anc AA122=A2A12=AA12=A
126 125 biimpa AA122=A2A12=AA12=A
127 123 126 syldan AA0A12=AA12=A
128 127 ord AA0¬A12=AA12=A
129 128 con1d AA0¬A12=AA12=A
130 111 129 pm2.61d AA0A12=A
131 130 ex AA0A12=A
132 12 131 pm2.61dne AA12=A