Metamath Proof Explorer


Theorem dfod2

Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses odf1.1 X=BaseG
odf1.2 O=odG
odf1.3 ·˙=G
odf1.4 F=xx·˙A
Assertion dfod2 GGrpAXOA=ifranFFinranF0

Proof

Step Hyp Ref Expression
1 odf1.1 X=BaseG
2 odf1.2 O=odG
3 odf1.3 ·˙=G
4 odf1.4 F=xx·˙A
5 fzfid GGrpAXOA0OA1Fin
6 1 3 mulgcl GGrpxAXx·˙AX
7 6 3expa GGrpxAXx·˙AX
8 7 an32s GGrpAXxx·˙AX
9 8 adantlr GGrpAXOAxx·˙AX
10 9 4 fmptd GGrpAXOAF:X
11 frn F:XranFX
12 1 fvexi XV
13 12 ssex ranFXranFV
14 10 11 13 3syl GGrpAXOAranFV
15 elfzelz y0OA1y
16 15 adantl GGrpAXOAy0OA1y
17 ovex y·˙AV
18 oveq1 x=yx·˙A=y·˙A
19 4 18 elrnmpt1s yy·˙AVy·˙AranF
20 16 17 19 sylancl GGrpAXOAy0OA1y·˙AranF
21 20 ralrimiva GGrpAXOAy0OA1y·˙AranF
22 zmodfz xOAxmodOA0OA1
23 22 ancoms OAxxmodOA0OA1
24 23 adantll GGrpAXOAxxmodOA0OA1
25 simpllr GGrpAXOAxy0OA1OA
26 simplr GGrpAXOAxy0OA1x
27 15 adantl GGrpAXOAxy0OA1y
28 moddvds OAxyxmodOA=ymodOAOAxy
29 25 26 27 28 syl3anc GGrpAXOAxy0OA1xmodOA=ymodOAOAxy
30 27 zred GGrpAXOAxy0OA1y
31 25 nnrpd GGrpAXOAxy0OA1OA+
32 0z 0
33 nnz OAOA
34 33 adantl GGrpAXOAOA
35 34 adantr GGrpAXOAxOA
36 elfzm11 0OAy0OA1y0yy<OA
37 32 35 36 sylancr GGrpAXOAxy0OA1y0yy<OA
38 37 biimpa GGrpAXOAxy0OA1y0yy<OA
39 38 simp2d GGrpAXOAxy0OA10y
40 38 simp3d GGrpAXOAxy0OA1y<OA
41 modid yOA+0yy<OAymodOA=y
42 30 31 39 40 41 syl22anc GGrpAXOAxy0OA1ymodOA=y
43 42 eqeq2d GGrpAXOAxy0OA1xmodOA=ymodOAxmodOA=y
44 eqcom xmodOA=yy=xmodOA
45 43 44 bitrdi GGrpAXOAxy0OA1xmodOA=ymodOAy=xmodOA
46 simp-4l GGrpAXOAxy0OA1GGrp
47 simp-4r GGrpAXOAxy0OA1AX
48 eqid 0G=0G
49 1 2 3 48 odcong GGrpAXxyOAxyx·˙A=y·˙A
50 46 47 26 27 49 syl112anc GGrpAXOAxy0OA1OAxyx·˙A=y·˙A
51 29 45 50 3bitr3rd GGrpAXOAxy0OA1x·˙A=y·˙Ay=xmodOA
52 51 ralrimiva GGrpAXOAxy0OA1x·˙A=y·˙Ay=xmodOA
53 reu6i xmodOA0OA1y0OA1x·˙A=y·˙Ay=xmodOA∃!y0OA1x·˙A=y·˙A
54 24 52 53 syl2anc GGrpAXOAx∃!y0OA1x·˙A=y·˙A
55 54 ralrimiva GGrpAXOAx∃!y0OA1x·˙A=y·˙A
56 ovex x·˙AV
57 56 rgenw xx·˙AV
58 eqeq1 z=x·˙Az=y·˙Ax·˙A=y·˙A
59 58 reubidv z=x·˙A∃!y0OA1z=y·˙A∃!y0OA1x·˙A=y·˙A
60 4 59 ralrnmptw xx·˙AVzranF∃!y0OA1z=y·˙Ax∃!y0OA1x·˙A=y·˙A
61 57 60 ax-mp zranF∃!y0OA1z=y·˙Ax∃!y0OA1x·˙A=y·˙A
62 55 61 sylibr GGrpAXOAzranF∃!y0OA1z=y·˙A
63 eqid y0OA1y·˙A=y0OA1y·˙A
64 63 f1ompt y0OA1y·˙A:0OA11-1 ontoranFy0OA1y·˙AranFzranF∃!y0OA1z=y·˙A
65 21 62 64 sylanbrc GGrpAXOAy0OA1y·˙A:0OA11-1 ontoranF
66 f1oen2g 0OA1FinranFVy0OA1y·˙A:0OA11-1 ontoranF0OA1ranF
67 5 14 65 66 syl3anc GGrpAXOA0OA1ranF
68 enfi 0OA1ranF0OA1FinranFFin
69 67 68 syl GGrpAXOA0OA1FinranFFin
70 5 69 mpbid GGrpAXOAranFFin
71 70 iftrued GGrpAXOAifranFFinranF0=ranF
72 fz01en OA0OA11OA
73 ensym 0OA11OA1OA0OA1
74 34 72 73 3syl GGrpAXOA1OA0OA1
75 entr 1OA0OA10OA1ranF1OAranF
76 74 67 75 syl2anc GGrpAXOA1OAranF
77 fzfid GGrpAXOA1OAFin
78 hashen 1OAFinranFFin1OA=ranF1OAranF
79 77 70 78 syl2anc GGrpAXOA1OA=ranF1OAranF
80 76 79 mpbird GGrpAXOA1OA=ranF
81 nnnn0 OAOA0
82 81 adantl GGrpAXOAOA0
83 hashfz1 OA01OA=OA
84 82 83 syl GGrpAXOA1OA=OA
85 71 80 84 3eqtr2rd GGrpAXOAOA=ifranFFinranF0
86 simp3 GGrpAXOA=0OA=0
87 1 2 3 4 odinf GGrpAXOA=0¬ranFFin
88 87 iffalsed GGrpAXOA=0ifranFFinranF0=0
89 86 88 eqtr4d GGrpAXOA=0OA=ifranFFinranF0
90 89 3expa GGrpAXOA=0OA=ifranFFinranF0
91 1 2 odcl AXOA0
92 91 adantl GGrpAXOA0
93 elnn0 OA0OAOA=0
94 92 93 sylib GGrpAXOAOA=0
95 85 90 94 mpjaodan GGrpAXOA=ifranFFinranF0