Metamath Proof Explorer


Theorem dia2dimlem5

Description: Lemma for dia2dim . The sum of vectors G and D belongs to the sum of the subspaces generated by them. Thus, F = ( G o. D ) belongs to the subspace sum. Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem5.l ˙ = K
dia2dimlem5.j ˙ = join K
dia2dimlem5.m ˙ = meet K
dia2dimlem5.a A = Atoms K
dia2dimlem5.h H = LHyp K
dia2dimlem5.t T = LTrn K W
dia2dimlem5.r R = trL K W
dia2dimlem5.y Y = DVecA K W
dia2dimlem5.s S = LSubSp Y
dia2dimlem5.pl ˙ = LSSum Y
dia2dimlem5.n N = LSpan Y
dia2dimlem5.i I = DIsoA K W
dia2dimlem5.q Q = P ˙ U ˙ F P ˙ V
dia2dimlem5.k φ K HL W H
dia2dimlem5.u φ U A U ˙ W
dia2dimlem5.v φ V A V ˙ W
dia2dimlem5.p φ P A ¬ P ˙ W
dia2dimlem5.f φ F T F P P
dia2dimlem5.rf φ R F ˙ U ˙ V
dia2dimlem5.uv φ U V
dia2dimlem5.ru φ R F U
dia2dimlem5.rv φ R F V
dia2dimlem5.g φ G T
dia2dimlem5.gv φ G P = Q
dia2dimlem5.d φ D T
dia2dimlem5.dv φ D Q = F P
Assertion dia2dimlem5 φ F I U ˙ I V

Proof

Step Hyp Ref Expression
1 dia2dimlem5.l ˙ = K
2 dia2dimlem5.j ˙ = join K
3 dia2dimlem5.m ˙ = meet K
4 dia2dimlem5.a A = Atoms K
5 dia2dimlem5.h H = LHyp K
6 dia2dimlem5.t T = LTrn K W
7 dia2dimlem5.r R = trL K W
8 dia2dimlem5.y Y = DVecA K W
9 dia2dimlem5.s S = LSubSp Y
10 dia2dimlem5.pl ˙ = LSSum Y
11 dia2dimlem5.n N = LSpan Y
12 dia2dimlem5.i I = DIsoA K W
13 dia2dimlem5.q Q = P ˙ U ˙ F P ˙ V
14 dia2dimlem5.k φ K HL W H
15 dia2dimlem5.u φ U A U ˙ W
16 dia2dimlem5.v φ V A V ˙ W
17 dia2dimlem5.p φ P A ¬ P ˙ W
18 dia2dimlem5.f φ F T F P P
19 dia2dimlem5.rf φ R F ˙ U ˙ V
20 dia2dimlem5.uv φ U V
21 dia2dimlem5.ru φ R F U
22 dia2dimlem5.rv φ R F V
23 dia2dimlem5.g φ G T
24 dia2dimlem5.gv φ G P = Q
25 dia2dimlem5.d φ D T
26 dia2dimlem5.dv φ D Q = F P
27 eqid + Y = + Y
28 5 6 8 27 dvavadd K HL W H D T G T D + Y G = D G
29 14 25 23 28 syl12anc φ D + Y G = D G
30 18 simpld φ F T
31 1 4 5 6 14 17 30 23 24 25 26 dia2dimlem4 φ D G = F
32 29 31 eqtr2d φ F = D + Y G
33 5 8 dvalvec K HL W H Y LVec
34 lveclmod Y LVec Y LMod
35 14 33 34 3syl φ Y LMod
36 9 lsssssubg Y LMod S SubGrp Y
37 35 36 syl φ S SubGrp Y
38 16 simpld φ V A
39 eqid Base K = Base K
40 39 4 atbase V A V Base K
41 38 40 syl φ V Base K
42 16 simprd φ V ˙ W
43 39 1 5 8 12 9 dialss K HL W H V Base K V ˙ W I V S
44 14 41 42 43 syl12anc φ I V S
45 37 44 sseldd φ I V SubGrp Y
46 15 simpld φ U A
47 39 4 atbase U A U Base K
48 46 47 syl φ U Base K
49 15 simprd φ U ˙ W
50 39 1 5 8 12 9 dialss K HL W H U Base K U ˙ W I U S
51 14 48 49 50 syl12anc φ I U S
52 37 51 sseldd φ I U SubGrp Y
53 5 6 7 8 12 11 dia1dim2 K HL W H D T I R D = N D
54 14 25 53 syl2anc φ I R D = N D
55 1 2 3 4 5 6 7 13 14 15 16 17 18 19 20 21 22 25 26 dia2dimlem3 φ R D = V
56 55 fveq2d φ I R D = I V
57 eqss I R D = I V I R D I V I V I R D
58 56 57 sylib φ I R D I V I V I R D
59 58 simpld φ I R D I V
60 54 59 eqsstrrd φ N D I V
61 eqid Base Y = Base Y
62 5 6 8 61 dvavbase K HL W H Base Y = T
63 14 62 syl φ Base Y = T
64 25 63 eleqtrrd φ D Base Y
65 61 9 11 35 44 64 lspsnel5 φ D I V N D I V
66 60 65 mpbird φ D I V
67 5 6 7 8 12 11 dia1dim2 K HL W H G T I R G = N G
68 14 23 67 syl2anc φ I R G = N G
69 1 2 3 4 5 6 7 13 14 15 16 17 18 19 22 23 24 dia2dimlem2 φ R G = U
70 69 fveq2d φ I R G = I U
71 eqss I R G = I U I R G I U I U I R G
72 70 71 sylib φ I R G I U I U I R G
73 72 simpld φ I R G I U
74 68 73 eqsstrrd φ N G I U
75 23 63 eleqtrrd φ G Base Y
76 61 9 11 35 51 75 lspsnel5 φ G I U N G I U
77 74 76 mpbird φ G I U
78 27 10 lsmelvali I V SubGrp Y I U SubGrp Y D I V G I U D + Y G I V ˙ I U
79 45 52 66 77 78 syl22anc φ D + Y G I V ˙ I U
80 32 79 eqeltrd φ F I V ˙ I U
81 lmodabl Y LMod Y Abel
82 35 81 syl φ Y Abel
83 10 lsmcom Y Abel I V SubGrp Y I U SubGrp Y I V ˙ I U = I U ˙ I V
84 82 45 52 83 syl3anc φ I V ˙ I U = I U ˙ I V
85 80 84 eleqtrd φ F I U ˙ I V