Metamath Proof Explorer


Theorem dia2dimlem5

Description: Lemma for dia2dim . The sum of vectors G and D belongs to the sum of the subspaces generated by them. Thus, F = ( G o. D ) belongs to the subspace sum. Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem5.l ˙=K
dia2dimlem5.j ˙=joinK
dia2dimlem5.m ˙=meetK
dia2dimlem5.a A=AtomsK
dia2dimlem5.h H=LHypK
dia2dimlem5.t T=LTrnKW
dia2dimlem5.r R=trLKW
dia2dimlem5.y Y=DVecAKW
dia2dimlem5.s S=LSubSpY
dia2dimlem5.pl ˙=LSSumY
dia2dimlem5.n N=LSpanY
dia2dimlem5.i I=DIsoAKW
dia2dimlem5.q Q=P˙U˙FP˙V
dia2dimlem5.k φKHLWH
dia2dimlem5.u φUAU˙W
dia2dimlem5.v φVAV˙W
dia2dimlem5.p φPA¬P˙W
dia2dimlem5.f φFTFPP
dia2dimlem5.rf φRF˙U˙V
dia2dimlem5.uv φUV
dia2dimlem5.ru φRFU
dia2dimlem5.rv φRFV
dia2dimlem5.g φGT
dia2dimlem5.gv φGP=Q
dia2dimlem5.d φDT
dia2dimlem5.dv φDQ=FP
Assertion dia2dimlem5 φFIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dimlem5.l ˙=K
2 dia2dimlem5.j ˙=joinK
3 dia2dimlem5.m ˙=meetK
4 dia2dimlem5.a A=AtomsK
5 dia2dimlem5.h H=LHypK
6 dia2dimlem5.t T=LTrnKW
7 dia2dimlem5.r R=trLKW
8 dia2dimlem5.y Y=DVecAKW
9 dia2dimlem5.s S=LSubSpY
10 dia2dimlem5.pl ˙=LSSumY
11 dia2dimlem5.n N=LSpanY
12 dia2dimlem5.i I=DIsoAKW
13 dia2dimlem5.q Q=P˙U˙FP˙V
14 dia2dimlem5.k φKHLWH
15 dia2dimlem5.u φUAU˙W
16 dia2dimlem5.v φVAV˙W
17 dia2dimlem5.p φPA¬P˙W
18 dia2dimlem5.f φFTFPP
19 dia2dimlem5.rf φRF˙U˙V
20 dia2dimlem5.uv φUV
21 dia2dimlem5.ru φRFU
22 dia2dimlem5.rv φRFV
23 dia2dimlem5.g φGT
24 dia2dimlem5.gv φGP=Q
25 dia2dimlem5.d φDT
26 dia2dimlem5.dv φDQ=FP
27 eqid +Y=+Y
28 5 6 8 27 dvavadd KHLWHDTGTD+YG=DG
29 14 25 23 28 syl12anc φD+YG=DG
30 18 simpld φFT
31 1 4 5 6 14 17 30 23 24 25 26 dia2dimlem4 φDG=F
32 29 31 eqtr2d φF=D+YG
33 5 8 dvalvec KHLWHYLVec
34 lveclmod YLVecYLMod
35 14 33 34 3syl φYLMod
36 9 lsssssubg YLModSSubGrpY
37 35 36 syl φSSubGrpY
38 16 simpld φVA
39 eqid BaseK=BaseK
40 39 4 atbase VAVBaseK
41 38 40 syl φVBaseK
42 16 simprd φV˙W
43 39 1 5 8 12 9 dialss KHLWHVBaseKV˙WIVS
44 14 41 42 43 syl12anc φIVS
45 37 44 sseldd φIVSubGrpY
46 15 simpld φUA
47 39 4 atbase UAUBaseK
48 46 47 syl φUBaseK
49 15 simprd φU˙W
50 39 1 5 8 12 9 dialss KHLWHUBaseKU˙WIUS
51 14 48 49 50 syl12anc φIUS
52 37 51 sseldd φIUSubGrpY
53 5 6 7 8 12 11 dia1dim2 KHLWHDTIRD=ND
54 14 25 53 syl2anc φIRD=ND
55 1 2 3 4 5 6 7 13 14 15 16 17 18 19 20 21 22 25 26 dia2dimlem3 φRD=V
56 55 fveq2d φIRD=IV
57 eqss IRD=IVIRDIVIVIRD
58 56 57 sylib φIRDIVIVIRD
59 58 simpld φIRDIV
60 54 59 eqsstrrd φNDIV
61 eqid BaseY=BaseY
62 5 6 8 61 dvavbase KHLWHBaseY=T
63 14 62 syl φBaseY=T
64 25 63 eleqtrrd φDBaseY
65 61 9 11 35 44 64 lspsnel5 φDIVNDIV
66 60 65 mpbird φDIV
67 5 6 7 8 12 11 dia1dim2 KHLWHGTIRG=NG
68 14 23 67 syl2anc φIRG=NG
69 1 2 3 4 5 6 7 13 14 15 16 17 18 19 22 23 24 dia2dimlem2 φRG=U
70 69 fveq2d φIRG=IU
71 eqss IRG=IUIRGIUIUIRG
72 70 71 sylib φIRGIUIUIRG
73 72 simpld φIRGIU
74 68 73 eqsstrrd φNGIU
75 23 63 eleqtrrd φGBaseY
76 61 9 11 35 51 75 lspsnel5 φGIUNGIU
77 74 76 mpbird φGIU
78 27 10 lsmelvali IVSubGrpYIUSubGrpYDIVGIUD+YGIV˙IU
79 45 52 66 77 78 syl22anc φD+YGIV˙IU
80 32 79 eqeltrd φFIV˙IU
81 lmodabl YLModYAbel
82 35 81 syl φYAbel
83 10 lsmcom YAbelIVSubGrpYIUSubGrpYIV˙IU=IU˙IV
84 82 45 52 83 syl3anc φIV˙IU=IU˙IV
85 80 84 eleqtrd φFIU˙IV