Description: Lemma for dia2dim . The sum of vectors G and D belongs to the sum of the subspaces generated by them. Thus, F = ( G o. D ) belongs to the subspace sum. Part of proof of Lemma M in Crawley p. 121 line 5. (Contributed by NM, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dia2dimlem5.l | |
|
dia2dimlem5.j | |
||
dia2dimlem5.m | |
||
dia2dimlem5.a | |
||
dia2dimlem5.h | |
||
dia2dimlem5.t | |
||
dia2dimlem5.r | |
||
dia2dimlem5.y | |
||
dia2dimlem5.s | |
||
dia2dimlem5.pl | |
||
dia2dimlem5.n | |
||
dia2dimlem5.i | |
||
dia2dimlem5.q | |
||
dia2dimlem5.k | |
||
dia2dimlem5.u | |
||
dia2dimlem5.v | |
||
dia2dimlem5.p | |
||
dia2dimlem5.f | |
||
dia2dimlem5.rf | |
||
dia2dimlem5.uv | |
||
dia2dimlem5.ru | |
||
dia2dimlem5.rv | |
||
dia2dimlem5.g | |
||
dia2dimlem5.gv | |
||
dia2dimlem5.d | |
||
dia2dimlem5.dv | |
||
Assertion | dia2dimlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dia2dimlem5.l | |
|
2 | dia2dimlem5.j | |
|
3 | dia2dimlem5.m | |
|
4 | dia2dimlem5.a | |
|
5 | dia2dimlem5.h | |
|
6 | dia2dimlem5.t | |
|
7 | dia2dimlem5.r | |
|
8 | dia2dimlem5.y | |
|
9 | dia2dimlem5.s | |
|
10 | dia2dimlem5.pl | |
|
11 | dia2dimlem5.n | |
|
12 | dia2dimlem5.i | |
|
13 | dia2dimlem5.q | |
|
14 | dia2dimlem5.k | |
|
15 | dia2dimlem5.u | |
|
16 | dia2dimlem5.v | |
|
17 | dia2dimlem5.p | |
|
18 | dia2dimlem5.f | |
|
19 | dia2dimlem5.rf | |
|
20 | dia2dimlem5.uv | |
|
21 | dia2dimlem5.ru | |
|
22 | dia2dimlem5.rv | |
|
23 | dia2dimlem5.g | |
|
24 | dia2dimlem5.gv | |
|
25 | dia2dimlem5.d | |
|
26 | dia2dimlem5.dv | |
|
27 | eqid | |
|
28 | 5 6 8 27 | dvavadd | |
29 | 14 25 23 28 | syl12anc | |
30 | 18 | simpld | |
31 | 1 4 5 6 14 17 30 23 24 25 26 | dia2dimlem4 | |
32 | 29 31 | eqtr2d | |
33 | 5 8 | dvalvec | |
34 | lveclmod | |
|
35 | 14 33 34 | 3syl | |
36 | 9 | lsssssubg | |
37 | 35 36 | syl | |
38 | 16 | simpld | |
39 | eqid | |
|
40 | 39 4 | atbase | |
41 | 38 40 | syl | |
42 | 16 | simprd | |
43 | 39 1 5 8 12 9 | dialss | |
44 | 14 41 42 43 | syl12anc | |
45 | 37 44 | sseldd | |
46 | 15 | simpld | |
47 | 39 4 | atbase | |
48 | 46 47 | syl | |
49 | 15 | simprd | |
50 | 39 1 5 8 12 9 | dialss | |
51 | 14 48 49 50 | syl12anc | |
52 | 37 51 | sseldd | |
53 | 5 6 7 8 12 11 | dia1dim2 | |
54 | 14 25 53 | syl2anc | |
55 | 1 2 3 4 5 6 7 13 14 15 16 17 18 19 20 21 22 25 26 | dia2dimlem3 | |
56 | 55 | fveq2d | |
57 | eqss | |
|
58 | 56 57 | sylib | |
59 | 58 | simpld | |
60 | 54 59 | eqsstrrd | |
61 | eqid | |
|
62 | 5 6 8 61 | dvavbase | |
63 | 14 62 | syl | |
64 | 25 63 | eleqtrrd | |
65 | 61 9 11 35 44 64 | lspsnel5 | |
66 | 60 65 | mpbird | |
67 | 5 6 7 8 12 11 | dia1dim2 | |
68 | 14 23 67 | syl2anc | |
69 | 1 2 3 4 5 6 7 13 14 15 16 17 18 19 22 23 24 | dia2dimlem2 | |
70 | 69 | fveq2d | |
71 | eqss | |
|
72 | 70 71 | sylib | |
73 | 72 | simpld | |
74 | 68 73 | eqsstrrd | |
75 | 23 63 | eleqtrrd | |
76 | 61 9 11 35 51 75 | lspsnel5 | |
77 | 74 76 | mpbird | |
78 | 27 10 | lsmelvali | |
79 | 45 52 66 77 78 | syl22anc | |
80 | 32 79 | eqeltrd | |
81 | lmodabl | |
|
82 | 35 81 | syl | |
83 | 10 | lsmcom | |
84 | 82 45 52 83 | syl3anc | |
85 | 80 84 | eleqtrd | |