Metamath Proof Explorer


Theorem dihjatcclem1

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b B=BaseK
dihjatcclem.l ˙=K
dihjatcclem.h H=LHypK
dihjatcclem.j ˙=joinK
dihjatcclem.m ˙=meetK
dihjatcclem.a A=AtomsK
dihjatcclem.u U=DVecHKW
dihjatcclem.s ˙=LSSumU
dihjatcclem.i I=DIsoHKW
dihjatcclem.v V=P˙Q˙W
dihjatcclem.k φKHLWH
dihjatcclem.p φPA¬P˙W
dihjatcclem.q φQA¬Q˙W
Assertion dihjatcclem1 φIP˙Q=IP˙IQ˙IV

Proof

Step Hyp Ref Expression
1 dihjatcclem.b B=BaseK
2 dihjatcclem.l ˙=K
3 dihjatcclem.h H=LHypK
4 dihjatcclem.j ˙=joinK
5 dihjatcclem.m ˙=meetK
6 dihjatcclem.a A=AtomsK
7 dihjatcclem.u U=DVecHKW
8 dihjatcclem.s ˙=LSSumU
9 dihjatcclem.i I=DIsoHKW
10 dihjatcclem.v V=P˙Q˙W
11 dihjatcclem.k φKHLWH
12 dihjatcclem.p φPA¬P˙W
13 dihjatcclem.q φQA¬Q˙W
14 3 7 11 dvhlmod φULMod
15 lmodabl ULModUAbel
16 14 15 syl φUAbel
17 eqid LSubSpU=LSubSpU
18 17 lsssssubg ULModLSubSpUSubGrpU
19 14 18 syl φLSubSpUSubGrpU
20 12 simpld φPA
21 1 6 atbase PAPB
22 20 21 syl φPB
23 1 3 9 7 17 dihlss KHLWHPBIPLSubSpU
24 11 22 23 syl2anc φIPLSubSpU
25 19 24 sseldd φIPSubGrpU
26 11 simpld φKHL
27 26 hllatd φKLat
28 13 simpld φQA
29 1 4 6 hlatjcl KHLPAQAP˙QB
30 26 20 28 29 syl3anc φP˙QB
31 11 simprd φWH
32 1 3 lhpbase WHWB
33 31 32 syl φWB
34 1 5 latmcl KLatP˙QBWBP˙Q˙WB
35 27 30 33 34 syl3anc φP˙Q˙WB
36 10 35 eqeltrid φVB
37 1 3 9 7 17 dihlss KHLWHVBIVLSubSpU
38 11 36 37 syl2anc φIVLSubSpU
39 19 38 sseldd φIVSubGrpU
40 1 6 atbase QAQB
41 28 40 syl φQB
42 1 3 9 7 17 dihlss KHLWHQBIQLSubSpU
43 11 41 42 syl2anc φIQLSubSpU
44 19 43 sseldd φIQSubGrpU
45 8 lsm4 UAbelIPSubGrpUIVSubGrpUIQSubGrpUIVSubGrpUIP˙IV˙IQ˙IV=IP˙IQ˙IV˙IV
46 16 25 39 44 39 45 syl122anc φIP˙IV˙IQ˙IV=IP˙IQ˙IV˙IV
47 13 simprd φ¬Q˙W
48 47 intnand φ¬P˙WQ˙W
49 1 2 4 latjle12 KLatPBQBWBP˙WQ˙WP˙Q˙W
50 27 22 41 33 49 syl13anc φP˙WQ˙WP˙Q˙W
51 48 50 mtbid φ¬P˙Q˙W
52 2 4 6 hlatlej1 KHLPAQAP˙P˙Q
53 26 20 28 52 syl3anc φP˙P˙Q
54 1 2 4 5 6 3 9 7 8 dihvalcq2 KHLWHP˙QB¬P˙Q˙WPA¬P˙WP˙P˙QIP˙Q=IP˙IP˙Q˙W
55 11 30 51 12 53 54 syl122anc φIP˙Q=IP˙IP˙Q˙W
56 10 fveq2i IV=IP˙Q˙W
57 56 oveq2i IP˙IV=IP˙IP˙Q˙W
58 55 57 eqtr4di φIP˙Q=IP˙IV
59 2 4 6 hlatlej2 KHLPAQAQ˙P˙Q
60 26 20 28 59 syl3anc φQ˙P˙Q
61 1 2 4 5 6 3 9 7 8 dihvalcq2 KHLWHP˙QB¬P˙Q˙WQA¬Q˙WQ˙P˙QIP˙Q=IQ˙IP˙Q˙W
62 11 30 51 13 60 61 syl122anc φIP˙Q=IQ˙IP˙Q˙W
63 56 oveq2i IQ˙IV=IQ˙IP˙Q˙W
64 62 63 eqtr4di φIP˙Q=IQ˙IV
65 58 64 oveq12d φIP˙Q˙IP˙Q=IP˙IV˙IQ˙IV
66 1 3 9 7 17 dihlss KHLWHP˙QBIP˙QLSubSpU
67 11 30 66 syl2anc φIP˙QLSubSpU
68 19 67 sseldd φIP˙QSubGrpU
69 8 lsmidm IP˙QSubGrpUIP˙Q˙IP˙Q=IP˙Q
70 68 69 syl φIP˙Q˙IP˙Q=IP˙Q
71 65 70 eqtr3d φIP˙IV˙IQ˙IV=IP˙Q
72 8 lsmidm IVSubGrpUIV˙IV=IV
73 39 72 syl φIV˙IV=IV
74 73 oveq2d φIP˙IQ˙IV˙IV=IP˙IQ˙IV
75 46 71 74 3eqtr3d φIP˙Q=IP˙IQ˙IV