| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihjatcclem.b |  | 
						
							| 2 |  | dihjatcclem.l |  | 
						
							| 3 |  | dihjatcclem.h |  | 
						
							| 4 |  | dihjatcclem.j |  | 
						
							| 5 |  | dihjatcclem.m |  | 
						
							| 6 |  | dihjatcclem.a |  | 
						
							| 7 |  | dihjatcclem.u |  | 
						
							| 8 |  | dihjatcclem.s |  | 
						
							| 9 |  | dihjatcclem.i |  | 
						
							| 10 |  | dihjatcclem.v |  | 
						
							| 11 |  | dihjatcclem.k |  | 
						
							| 12 |  | dihjatcclem.p |  | 
						
							| 13 |  | dihjatcclem.q |  | 
						
							| 14 | 3 7 11 | dvhlmod |  | 
						
							| 15 |  | lmodabl |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | lsssssubg |  | 
						
							| 19 | 14 18 | syl |  | 
						
							| 20 | 12 | simpld |  | 
						
							| 21 | 1 6 | atbase |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 1 3 9 7 17 | dihlss |  | 
						
							| 24 | 11 22 23 | syl2anc |  | 
						
							| 25 | 19 24 | sseldd |  | 
						
							| 26 | 11 | simpld |  | 
						
							| 27 | 26 | hllatd |  | 
						
							| 28 | 13 | simpld |  | 
						
							| 29 | 1 4 6 | hlatjcl |  | 
						
							| 30 | 26 20 28 29 | syl3anc |  | 
						
							| 31 | 11 | simprd |  | 
						
							| 32 | 1 3 | lhpbase |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 1 5 | latmcl |  | 
						
							| 35 | 27 30 33 34 | syl3anc |  | 
						
							| 36 | 10 35 | eqeltrid |  | 
						
							| 37 | 1 3 9 7 17 | dihlss |  | 
						
							| 38 | 11 36 37 | syl2anc |  | 
						
							| 39 | 19 38 | sseldd |  | 
						
							| 40 | 1 6 | atbase |  | 
						
							| 41 | 28 40 | syl |  | 
						
							| 42 | 1 3 9 7 17 | dihlss |  | 
						
							| 43 | 11 41 42 | syl2anc |  | 
						
							| 44 | 19 43 | sseldd |  | 
						
							| 45 | 8 | lsm4 |  | 
						
							| 46 | 16 25 39 44 39 45 | syl122anc |  | 
						
							| 47 | 13 | simprd |  | 
						
							| 48 | 47 | intnand |  | 
						
							| 49 | 1 2 4 | latjle12 |  | 
						
							| 50 | 27 22 41 33 49 | syl13anc |  | 
						
							| 51 | 48 50 | mtbid |  | 
						
							| 52 | 2 4 6 | hlatlej1 |  | 
						
							| 53 | 26 20 28 52 | syl3anc |  | 
						
							| 54 | 1 2 4 5 6 3 9 7 8 | dihvalcq2 |  | 
						
							| 55 | 11 30 51 12 53 54 | syl122anc |  | 
						
							| 56 | 10 | fveq2i |  | 
						
							| 57 | 56 | oveq2i |  | 
						
							| 58 | 55 57 | eqtr4di |  | 
						
							| 59 | 2 4 6 | hlatlej2 |  | 
						
							| 60 | 26 20 28 59 | syl3anc |  | 
						
							| 61 | 1 2 4 5 6 3 9 7 8 | dihvalcq2 |  | 
						
							| 62 | 11 30 51 13 60 61 | syl122anc |  | 
						
							| 63 | 56 | oveq2i |  | 
						
							| 64 | 62 63 | eqtr4di |  | 
						
							| 65 | 58 64 | oveq12d |  | 
						
							| 66 | 1 3 9 7 17 | dihlss |  | 
						
							| 67 | 11 30 66 | syl2anc |  | 
						
							| 68 | 19 67 | sseldd |  | 
						
							| 69 | 8 | lsmidm |  | 
						
							| 70 | 68 69 | syl |  | 
						
							| 71 | 65 70 | eqtr3d |  | 
						
							| 72 | 8 | lsmidm |  | 
						
							| 73 | 39 72 | syl |  | 
						
							| 74 | 73 | oveq2d |  | 
						
							| 75 | 46 71 74 | 3eqtr3d |  |