Metamath Proof Explorer


Theorem dirkerper

Description: the Dirichlet Kernel has period 2 _pi . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkerper.1 D=nyifymod2π=02n+12πsinn+12y2πsiny2
dirkerper.2 T=2π
Assertion dirkerper NxDNx+T=DNx

Proof

Step Hyp Ref Expression
1 dirkerper.1 D=nyifymod2π=02n+12πsinn+12y2πsiny2
2 dirkerper.2 T=2π
3 2 eqcomi 2π=T
4 3 oveq2i 12π=1T
5 2re 2
6 pire π
7 5 6 remulcli 2π
8 2 7 eqeltri T
9 8 recni T
10 9 mullidi 1T=T
11 4 10 eqtri 12π=T
12 11 oveq2i x+12π=x+T
13 12 eqcomi x+T=x+12π
14 13 oveq1i x+Tmod2π=x+12πmod2π
15 14 a1i Nxxmod2π=0x+Tmod2π=x+12πmod2π
16 id xx
17 16 ad2antlr Nxxmod2π=0x
18 2rp 2+
19 pirp π+
20 rpmulcl 2+π+2π+
21 18 19 20 mp2an 2π+
22 21 a1i Nxxmod2π=02π+
23 1z 1
24 23 a1i Nxxmod2π=01
25 modcyc x2π+1x+12πmod2π=xmod2π
26 17 22 24 25 syl3anc Nxxmod2π=0x+12πmod2π=xmod2π
27 simpr Nxxmod2π=0xmod2π=0
28 15 26 27 3eqtrd Nxxmod2π=0x+Tmod2π=0
29 28 iftrued Nxxmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=2 N+12π
30 iftrue xmod2π=0ifxmod2π=02 N+12πsinN+12x2πsinx2=2 N+12π
31 30 adantl Nxxmod2π=0ifxmod2π=02 N+12πsinN+12x2πsinx2=2 N+12π
32 29 31 eqtr4d Nxxmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=ifxmod2π=02 N+12πsinN+12x2πsinx2
33 iffalse ¬xmod2π=0ifxmod2π=02 N+12πsinN+12x2πsinx2=sinN+12x2πsinx2
34 33 adantl Nx¬xmod2π=0ifxmod2π=02 N+12πsinN+12x2πsinx2=sinN+12x2πsinx2
35 nncn NN
36 halfcn 12
37 36 a1i N12
38 35 37 addcld NN+12
39 38 adantr NxN+12
40 recn xx
41 40 adantl Nxx
42 39 41 mulcld NxN+12x
43 42 sincld NxsinN+12x
44 43 adantr Nx¬xmod2π=0sinN+12x
45 7 recni 2π
46 45 a1i Nx2π
47 41 halfcld Nxx2
48 47 sincld Nxsinx2
49 46 48 mulcld Nx2πsinx2
50 49 adantr Nx¬xmod2π=02πsinx2
51 dirkerdenne0 x¬xmod2π=02πsinx20
52 51 adantll Nx¬xmod2π=02πsinx20
53 44 50 52 div2negd Nx¬xmod2π=0sinN+12x2πsinx2=sinN+12x2πsinx2
54 14 a1i xx+Tmod2π=x+12πmod2π
55 21 23 25 mp3an23 xx+12πmod2π=xmod2π
56 54 55 eqtrd xx+Tmod2π=xmod2π
57 56 adantr x¬xmod2π=0x+Tmod2π=xmod2π
58 simpr x¬xmod2π=0¬xmod2π=0
59 58 neqned x¬xmod2π=0xmod2π0
60 57 59 eqnetrd x¬xmod2π=0x+Tmod2π0
61 60 neneqd x¬xmod2π=0¬x+Tmod2π=0
62 iffalse ¬x+Tmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=sinN+12x+T2πsinx+T2
63 2 oveq2i x+T=x+2π
64 63 oveq2i N+12x+T=N+12x+2π
65 64 fveq2i sinN+12x+T=sinN+12x+2π
66 63 oveq1i x+T2=x+2π2
67 66 fveq2i sinx+T2=sinx+2π2
68 67 oveq2i 2πsinx+T2=2πsinx+2π2
69 65 68 oveq12i sinN+12x+T2πsinx+T2=sinN+12x+2π2πsinx+2π2
70 62 69 eqtrdi ¬x+Tmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=sinN+12x+2π2πsinx+2π2
71 61 70 syl x¬xmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=sinN+12x+2π2πsinx+2π2
72 71 adantll Nx¬xmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=sinN+12x+2π2πsinx+2π2
73 45 a1i N2π
74 35 37 73 adddird NN+122π=N2π+122π
75 ax-1cn 1
76 2cnne0 220
77 2cn 2
78 picn π
79 77 78 mulcli 2π
80 div32 12202π122π=12π2
81 75 76 79 80 mp3an 122π=12π2
82 2ne0 20
83 79 77 82 divcli 2π2
84 83 mullidi 12π2=2π2
85 78 77 82 divcan3i 2π2=π
86 84 85 eqtri 12π2=π
87 81 86 eqtri 122π=π
88 87 oveq2i N2π+122π=N2π+π
89 74 88 eqtrdi NN+122π=N2π+π
90 89 oveq2d NN+12x+N+122π=N+12x+N2π+π
91 90 adantr NxN+12x+N+122π=N+12x+N2π+π
92 39 41 46 adddid NxN+12x+2π=N+12x+N+122π
93 35 73 mulcld NN2π
94 93 adantr NxN2π
95 78 a1i Nxπ
96 42 94 95 addassd NxN+12x+N2π+π=N+12x+N2π+π
97 91 92 96 3eqtr4d NxN+12x+2π=N+12x+N2π+π
98 97 fveq2d NxsinN+12x+2π=sinN+12x+N2π+π
99 42 94 addcld NxN+12x+N2π
100 sinppi N+12x+N2πsinN+12x+N2π+π=sinN+12x+N2π
101 99 100 syl NxsinN+12x+N2π+π=sinN+12x+N2π
102 simpl NxN
103 102 nnzd NxN
104 sinper N+12xNsinN+12x+N2π=sinN+12x
105 42 103 104 syl2anc NxsinN+12x+N2π=sinN+12x
106 105 negeqd NxsinN+12x+N2π=sinN+12x
107 98 101 106 3eqtrd NxsinN+12x+2π=sinN+12x
108 45 a1i x2π
109 77 a1i x2
110 82 a1i x20
111 40 108 109 110 divdird xx+2π2=x2+2π2
112 85 a1i x2π2=π
113 112 oveq2d xx2+2π2=x2+π
114 111 113 eqtrd xx+2π2=x2+π
115 114 fveq2d xsinx+2π2=sinx2+π
116 40 halfcld xx2
117 sinppi x2sinx2+π=sinx2
118 116 117 syl xsinx2+π=sinx2
119 115 118 eqtrd xsinx+2π2=sinx2
120 119 oveq2d x2πsinx+2π2=2πsinx2
121 120 adantl Nx2πsinx+2π2=2πsinx2
122 107 121 oveq12d NxsinN+12x+2π2πsinx+2π2=sinN+12x2πsinx2
123 122 adantr Nx¬xmod2π=0sinN+12x+2π2πsinx+2π2=sinN+12x2πsinx2
124 116 sincld xsinx2
125 108 124 mulneg2d x2πsinx2=2πsinx2
126 125 oveq2d xsinN+12x2πsinx2=sinN+12x2πsinx2
127 126 ad2antlr Nx¬xmod2π=0sinN+12x2πsinx2=sinN+12x2πsinx2
128 72 123 127 3eqtrrd Nx¬xmod2π=0sinN+12x2πsinx2=ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2
129 34 53 128 3eqtr2rd Nx¬xmod2π=0ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=ifxmod2π=02 N+12πsinN+12x2πsinx2
130 32 129 pm2.61dan Nxifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2=ifxmod2π=02 N+12πsinN+12x2πsinx2
131 8 a1i xT
132 16 131 readdcld xx+T
133 1 dirkerval2 Nx+TDNx+T=ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2
134 132 133 sylan2 NxDNx+T=ifx+Tmod2π=02 N+12πsinN+12x+T2πsinx+T2
135 1 dirkerval2 NxDNx=ifxmod2π=02 N+12πsinN+12x2πsinx2
136 130 134 135 3eqtr4d NxDNx+T=DNx