Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Dirichlet kernel
dirkerper
Next ⟩
dirkerf
Metamath Proof Explorer
Ascii
Unicode
Theorem
dirkerper
Description:
the Dirichlet Kernel has period
2 _pi
.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Hypotheses
dirkerper.1
π
π
π
⊢
D
=
n
∈
ℕ
⟼
y
∈
ℝ
⟼
if
y
mod
2
π
=
0
2
n
+
1
2
π
sin
n
+
1
2
y
2
π
sin
y
2
dirkerper.2
π
⊢
T
=
2
π
Assertion
dirkerper
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
D
N
x
+
T
=
D
N
x
Proof
Step
Hyp
Ref
Expression
1
dirkerper.1
π
π
π
⊢
D
=
n
∈
ℕ
⟼
y
∈
ℝ
⟼
if
y
mod
2
π
=
0
2
n
+
1
2
π
sin
n
+
1
2
y
2
π
sin
y
2
2
dirkerper.2
π
⊢
T
=
2
π
3
2
eqcomi
π
⊢
2
π
=
T
4
3
oveq2i
π
⊢
1
2
π
=
1
T
5
2re
⊢
2
∈
ℝ
6
pire
π
⊢
π
∈
ℝ
7
5
6
remulcli
π
⊢
2
π
∈
ℝ
8
2
7
eqeltri
⊢
T
∈
ℝ
9
8
recni
⊢
T
∈
ℂ
10
9
mullidi
⊢
1
T
=
T
11
4
10
eqtri
π
⊢
1
2
π
=
T
12
11
oveq2i
π
⊢
x
+
1
2
π
=
x
+
T
13
12
eqcomi
π
⊢
x
+
T
=
x
+
1
2
π
14
13
oveq1i
π
π
π
⊢
x
+
T
mod
2
π
=
x
+
1
2
π
mod
2
π
15
14
a1i
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
x
+
T
mod
2
π
=
x
+
1
2
π
mod
2
π
16
id
⊢
x
∈
ℝ
→
x
∈
ℝ
17
16
ad2antlr
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
x
∈
ℝ
18
2rp
⊢
2
∈
ℝ
+
19
pirp
π
⊢
π
∈
ℝ
+
20
rpmulcl
π
π
⊢
2
∈
ℝ
+
∧
π
∈
ℝ
+
→
2
π
∈
ℝ
+
21
18
19
20
mp2an
π
⊢
2
π
∈
ℝ
+
22
21
a1i
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
2
π
∈
ℝ
+
23
1z
⊢
1
∈
ℤ
24
23
a1i
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
1
∈
ℤ
25
modcyc
π
π
π
π
⊢
x
∈
ℝ
∧
2
π
∈
ℝ
+
∧
1
∈
ℤ
→
x
+
1
2
π
mod
2
π
=
x
mod
2
π
26
17
22
24
25
syl3anc
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
x
+
1
2
π
mod
2
π
=
x
mod
2
π
27
simpr
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
x
mod
2
π
=
0
28
15
26
27
3eqtrd
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
x
+
T
mod
2
π
=
0
29
28
iftrued
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
2
⋅
N
+
1
2
π
30
iftrue
π
π
π
π
π
⊢
x
mod
2
π
=
0
→
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
=
2
⋅
N
+
1
2
π
31
30
adantl
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
=
2
⋅
N
+
1
2
π
32
29
31
eqtr4d
π
π
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
x
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
33
iffalse
π
π
π
π
π
⊢
¬
x
mod
2
π
=
0
→
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
=
sin
N
+
1
2
x
2
π
sin
x
2
34
33
adantl
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
=
sin
N
+
1
2
x
2
π
sin
x
2
35
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
36
halfcn
⊢
1
2
∈
ℂ
37
36
a1i
⊢
N
∈
ℕ
→
1
2
∈
ℂ
38
35
37
addcld
⊢
N
∈
ℕ
→
N
+
1
2
∈
ℂ
39
38
adantr
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
∈
ℂ
40
recn
⊢
x
∈
ℝ
→
x
∈
ℂ
41
40
adantl
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
x
∈
ℂ
42
39
41
mulcld
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
x
∈
ℂ
43
42
sincld
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
N
+
1
2
x
∈
ℂ
44
43
adantr
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
sin
N
+
1
2
x
∈
ℂ
45
7
recni
π
⊢
2
π
∈
ℂ
46
45
a1i
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
2
π
∈
ℂ
47
41
halfcld
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
x
2
∈
ℂ
48
47
sincld
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
x
2
∈
ℂ
49
46
48
mulcld
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
2
π
sin
x
2
∈
ℂ
50
49
adantr
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
2
π
sin
x
2
∈
ℂ
51
dirkerdenne0
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
2
π
sin
x
2
≠
0
52
51
adantll
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
2
π
sin
x
2
≠
0
53
44
50
52
div2negd
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
−
sin
N
+
1
2
x
−
2
π
sin
x
2
=
sin
N
+
1
2
x
2
π
sin
x
2
54
14
a1i
π
π
π
⊢
x
∈
ℝ
→
x
+
T
mod
2
π
=
x
+
1
2
π
mod
2
π
55
21
23
25
mp3an23
π
π
π
⊢
x
∈
ℝ
→
x
+
1
2
π
mod
2
π
=
x
mod
2
π
56
54
55
eqtrd
π
π
⊢
x
∈
ℝ
→
x
+
T
mod
2
π
=
x
mod
2
π
57
56
adantr
π
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
x
+
T
mod
2
π
=
x
mod
2
π
58
simpr
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
¬
x
mod
2
π
=
0
59
58
neqned
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
x
mod
2
π
≠
0
60
57
59
eqnetrd
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
x
+
T
mod
2
π
≠
0
61
60
neneqd
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
¬
x
+
T
mod
2
π
=
0
62
iffalse
π
π
π
π
π
⊢
¬
x
+
T
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
63
2
oveq2i
π
⊢
x
+
T
=
x
+
2
π
64
63
oveq2i
π
⊢
N
+
1
2
x
+
T
=
N
+
1
2
x
+
2
π
65
64
fveq2i
π
⊢
sin
N
+
1
2
x
+
T
=
sin
N
+
1
2
x
+
2
π
66
63
oveq1i
π
⊢
x
+
T
2
=
x
+
2
π
2
67
66
fveq2i
π
⊢
sin
x
+
T
2
=
sin
x
+
2
π
2
68
67
oveq2i
π
π
π
⊢
2
π
sin
x
+
T
2
=
2
π
sin
x
+
2
π
2
69
65
68
oveq12i
π
π
π
π
⊢
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
sin
N
+
1
2
x
+
2
π
2
π
sin
x
+
2
π
2
70
62
69
eqtrdi
π
π
π
π
π
π
π
⊢
¬
x
+
T
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
sin
N
+
1
2
x
+
2
π
2
π
sin
x
+
2
π
2
71
61
70
syl
π
π
π
π
π
π
π
⊢
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
sin
N
+
1
2
x
+
2
π
2
π
sin
x
+
2
π
2
72
71
adantll
π
π
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
sin
N
+
1
2
x
+
2
π
2
π
sin
x
+
2
π
2
73
45
a1i
π
⊢
N
∈
ℕ
→
2
π
∈
ℂ
74
35
37
73
adddird
π
π
π
⊢
N
∈
ℕ
→
N
+
1
2
2
π
=
N
2
π
+
1
2
2
π
75
ax-1cn
⊢
1
∈
ℂ
76
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
77
2cn
⊢
2
∈
ℂ
78
picn
π
⊢
π
∈
ℂ
79
77
78
mulcli
π
⊢
2
π
∈
ℂ
80
div32
π
π
π
⊢
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
∧
2
π
∈
ℂ
→
1
2
2
π
=
1
2
π
2
81
75
76
79
80
mp3an
π
π
⊢
1
2
2
π
=
1
2
π
2
82
2ne0
⊢
2
≠
0
83
79
77
82
divcli
π
⊢
2
π
2
∈
ℂ
84
83
mullidi
π
π
⊢
1
2
π
2
=
2
π
2
85
78
77
82
divcan3i
π
π
⊢
2
π
2
=
π
86
84
85
eqtri
π
π
⊢
1
2
π
2
=
π
87
81
86
eqtri
π
π
⊢
1
2
2
π
=
π
88
87
oveq2i
π
π
π
π
⊢
N
2
π
+
1
2
2
π
=
N
2
π
+
π
89
74
88
eqtrdi
π
π
π
⊢
N
∈
ℕ
→
N
+
1
2
2
π
=
N
2
π
+
π
90
89
oveq2d
π
π
π
⊢
N
∈
ℕ
→
N
+
1
2
x
+
N
+
1
2
2
π
=
N
+
1
2
x
+
N
2
π
+
π
91
90
adantr
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
x
+
N
+
1
2
2
π
=
N
+
1
2
x
+
N
2
π
+
π
92
39
41
46
adddid
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
x
+
2
π
=
N
+
1
2
x
+
N
+
1
2
2
π
93
35
73
mulcld
π
⊢
N
∈
ℕ
→
N
2
π
∈
ℂ
94
93
adantr
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
2
π
∈
ℂ
95
78
a1i
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
π
∈
ℂ
96
42
94
95
addassd
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
x
+
N
2
π
+
π
=
N
+
1
2
x
+
N
2
π
+
π
97
91
92
96
3eqtr4d
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
x
+
2
π
=
N
+
1
2
x
+
N
2
π
+
π
98
97
fveq2d
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
N
+
1
2
x
+
2
π
=
sin
N
+
1
2
x
+
N
2
π
+
π
99
42
94
addcld
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
+
1
2
x
+
N
2
π
∈
ℂ
100
sinppi
π
π
π
π
⊢
N
+
1
2
x
+
N
2
π
∈
ℂ
→
sin
N
+
1
2
x
+
N
2
π
+
π
=
−
sin
N
+
1
2
x
+
N
2
π
101
99
100
syl
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
N
+
1
2
x
+
N
2
π
+
π
=
−
sin
N
+
1
2
x
+
N
2
π
102
simpl
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
∈
ℕ
103
102
nnzd
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
N
∈
ℤ
104
sinper
π
⊢
N
+
1
2
x
∈
ℂ
∧
N
∈
ℤ
→
sin
N
+
1
2
x
+
N
2
π
=
sin
N
+
1
2
x
105
42
103
104
syl2anc
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
N
+
1
2
x
+
N
2
π
=
sin
N
+
1
2
x
106
105
negeqd
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
−
sin
N
+
1
2
x
+
N
2
π
=
−
sin
N
+
1
2
x
107
98
101
106
3eqtrd
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
N
+
1
2
x
+
2
π
=
−
sin
N
+
1
2
x
108
45
a1i
π
⊢
x
∈
ℝ
→
2
π
∈
ℂ
109
77
a1i
⊢
x
∈
ℝ
→
2
∈
ℂ
110
82
a1i
⊢
x
∈
ℝ
→
2
≠
0
111
40
108
109
110
divdird
π
π
⊢
x
∈
ℝ
→
x
+
2
π
2
=
x
2
+
2
π
2
112
85
a1i
π
π
⊢
x
∈
ℝ
→
2
π
2
=
π
113
112
oveq2d
π
π
⊢
x
∈
ℝ
→
x
2
+
2
π
2
=
x
2
+
π
114
111
113
eqtrd
π
π
⊢
x
∈
ℝ
→
x
+
2
π
2
=
x
2
+
π
115
114
fveq2d
π
π
⊢
x
∈
ℝ
→
sin
x
+
2
π
2
=
sin
x
2
+
π
116
40
halfcld
⊢
x
∈
ℝ
→
x
2
∈
ℂ
117
sinppi
π
⊢
x
2
∈
ℂ
→
sin
x
2
+
π
=
−
sin
x
2
118
116
117
syl
π
⊢
x
∈
ℝ
→
sin
x
2
+
π
=
−
sin
x
2
119
115
118
eqtrd
π
⊢
x
∈
ℝ
→
sin
x
+
2
π
2
=
−
sin
x
2
120
119
oveq2d
π
π
π
⊢
x
∈
ℝ
→
2
π
sin
x
+
2
π
2
=
2
π
−
sin
x
2
121
120
adantl
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
2
π
sin
x
+
2
π
2
=
2
π
−
sin
x
2
122
107
121
oveq12d
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
sin
N
+
1
2
x
+
2
π
2
π
sin
x
+
2
π
2
=
−
sin
N
+
1
2
x
2
π
−
sin
x
2
123
122
adantr
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
sin
N
+
1
2
x
+
2
π
2
π
sin
x
+
2
π
2
=
−
sin
N
+
1
2
x
2
π
−
sin
x
2
124
116
sincld
⊢
x
∈
ℝ
→
sin
x
2
∈
ℂ
125
108
124
mulneg2d
π
π
⊢
x
∈
ℝ
→
2
π
−
sin
x
2
=
−
2
π
sin
x
2
126
125
oveq2d
π
π
⊢
x
∈
ℝ
→
−
sin
N
+
1
2
x
2
π
−
sin
x
2
=
−
sin
N
+
1
2
x
−
2
π
sin
x
2
127
126
ad2antlr
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
−
sin
N
+
1
2
x
2
π
−
sin
x
2
=
−
sin
N
+
1
2
x
−
2
π
sin
x
2
128
72
123
127
3eqtrrd
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
−
sin
N
+
1
2
x
−
2
π
sin
x
2
=
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
129
34
53
128
3eqtr2rd
π
π
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
∧
¬
x
mod
2
π
=
0
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
130
32
129
pm2.61dan
π
π
π
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
=
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
131
8
a1i
⊢
x
∈
ℝ
→
T
∈
ℝ
132
16
131
readdcld
⊢
x
∈
ℝ
→
x
+
T
∈
ℝ
133
1
dirkerval2
π
π
π
⊢
N
∈
ℕ
∧
x
+
T
∈
ℝ
→
D
N
x
+
T
=
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
134
132
133
sylan2
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
D
N
x
+
T
=
if
x
+
T
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
+
T
2
π
sin
x
+
T
2
135
1
dirkerval2
π
π
π
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
D
N
x
=
if
x
mod
2
π
=
0
2
⋅
N
+
1
2
π
sin
N
+
1
2
x
2
π
sin
x
2
136
130
134
135
3eqtr4d
⊢
N
∈
ℕ
∧
x
∈
ℝ
→
D
N
x
+
T
=
D
N
x